Resonant Inductive Coupling Wireless Power Transfer (RIC-WPT)is a key technology to provide an efficient wireless power channel to consumer electronics, biomedical implants and wireless sensor networks. Due to its non radiative nature, RIC Wireless Power Transfer has been considered safe for humans when adhered to magnetic health radiation safety regulations (Christ et al., 2013), unveiling a large range of potential applications in which this technology could be used. However, current deployments are limited to point-to-point links and do not explore the capabilities of Multi-Node RIC-WPT Systems. In such a system, the multi-path relaying effect between different nodes could effectively improve the performance of the link in terms of power transferred to the load and power transfer efficiency. However, depending on the impedance and resonant frequency of the nodes that generate the multi-path effect, these nodes could also act as interfering objects, therefore (a) making the transmitter and/or receiver act as a pass-band filter and (b) losing part of the transmitter magnetic field through coupling to the interfering node. In this paper, a circuit-based analytical model that predicts the behavior of a Multi-Node Resonant Inductive Coupling link is proposed and used to perform a design-space exploration of the multi-path relaying effect in RIC Wireless Power Transfer Systems.