Article contents
Quantum mathematical cognition requires quantum brain biology: The “Orch OR” theory
Published online by Cambridge University Press: 14 May 2013
Abstract
The “Orch OR” theory suggests that quantum computations in brain neuronal dendritic-somatic microtubules regulate axonal firings to control conscious behavior. Within microtubule subunit proteins, collective dipoles in arrays of contiguous amino acid electron clouds enable “quantum channels” suitable for topological dipole “qubits” able to physically represent cognitive values, for example, those portrayed by Pothos & Busemeyer (P&B) as projections in abstract Hilbert space.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2013
References
Craddock, T. J. A., St George, M., Freedman, H., Barakat, K. H., Damaraju, S., Hameroff, S. & Tuszynski, J. A. (2012a) Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: Implications for side effects of general anesthesia. PLoS ONE
7(6):e37251.CrossRefGoogle ScholarPubMed
Craddock, T. J. A., Tuszynski, J. A. & Hameroff, S. (2012b) Cytoskeletal signaling: Is memory encoded in microtubule lattices by CaMKII phosphorylation?
PLoS Computational Biology
8(3):e1002421.Google Scholar
Engel, G. S., Calhoun, T. R., Read, E. L., Ahn, T. K., Mancal, T., Cheng, Y. C., Blankenship, R. E. & Fleming, G. R. (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature (London)
446(7137):782–86.CrossRefGoogle ScholarPubMed
Freedman, M. H., Kitaev, A., Larsen, M. J. & Wang, Z. (2002) Topological quantum computation. Bulletin of the American Mathematical Society
40:31–38.Google Scholar
Gauger, E. M., Rieper, E., Morton, J. J. L., Benjamin, S. C. & Vedral, V. (2011) Sustained quantum coherence and entanglement in the avian compass. Physical Review Letters
106:040503.CrossRefGoogle ScholarPubMed
Hagan, S., Hameroff, S. & Tuszynski, J. (2002) Quantum computation in brain microtubules? Decoherence and biological feasibility. Physical Review E
65:061901.Google Scholar
Hameroff, S. (1998) Quantum computation in brain microtubules? The Penrose–Hameroff “Orch OR” model of consciousness. Philosophical Transactions of the Royal Society of London Series A
356:1869–96.Google Scholar
Hameroff, S. (2006a) Consciousness, neurobiology and quantum mechanics: The case for a connection, In: The Emerging Physics of Consciousness, ed. Tuszynski, J., pp. 193–252, Springer.CrossRefGoogle Scholar
Hameroff, S. (2006b) The entwined mysteries of anesthesia and consciousness. Anesthesiology
105:400–12.Google Scholar
Hameroff, S. (2010) The “conscious pilot” – dendritic synchrony moves through the brain to mediate consciousness. Journal of Biological Physics
36:71–93.CrossRefGoogle Scholar
Hameroff, S. (2012) How quantum brain biology can rescue conscious free will. Frontiers in Integrative Neuroscience
6(93):1–17. DOI: 10.3389/fnint.2012.00093.Google Scholar
Hameroff, S., Nip, A., Porter, M. & Tuszynski, J. (2002) Conduction pathways in microtubules, biological quantum computation and microtubules. Biosystems
64(13):149–68.Google Scholar
Hameroff, S. R. (2007) The brain is both neurocomputer and quantum computer. Cognitive Science
31:1035–45.CrossRefGoogle ScholarPubMed
Hameroff, S. R. & Penrose, R. (1996a) Conscious events as orchestrated spacetime selections. Journal of Consciousness Studies
3(1):36–53.Google Scholar
Hameroff, S. R. & Penrose, R. (1996b) Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness. Mathematics and Computers in Simulation
40:453–80.CrossRefGoogle Scholar
Kitaev, A. Y. (2003) Fault-tolerant quantum computation. Annals of Physics
303(1):2–30; quant-ph/9707021.CrossRefGoogle Scholar
McKemmish, L. K., Reimers, J. R., McKenzie, R. H., Mark, A. E. & Hush, N. S. (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Physical Review E. 80:021912.CrossRefGoogle Scholar
Penrose, R. (1994) Shadows of the mind: a search for the missing science of consciousness. Oxford University Press.Google Scholar
Penrose, R. (1996) On gravity's role in quantum state reduction. General Relativity Gravity
28:581–600.CrossRefGoogle Scholar
Penrose, R. (2004) The road to reality: A complete guide to the laws of the universe. Jonathan Cape.Google Scholar
Penrose, R. & Hameroff, S. (2011) Consciousness in the universe: Neuroscience, quantum space-time geometry and Orch OR theory. Journal of Cosmology
14:1–17. Available at: http://journalofcosmology.com/Consciousness160.html.Google Scholar
Penrose, R. & Hameroff, S. R. (1995) What gaps? Reply to Grush and Churchland. Journal of Consciousness Studies
2:98–112.Google Scholar
Sarovar, M., Ishizaki, A., Fleming, G. R. & Whaley, B. K. (2010) Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics
6(6):462–67.Google Scholar
Scholes, G. S. (2010) Quantum-coherent electronic energy transfer: Did nature think of it first?
Journal of Physics and Chemistry Letters
1:2–8.Google Scholar
Tegmark, M. (2000) The importance of quantum decoherence in brain processes. Physical Review E
61:4194–206.Google Scholar
- 8
- Cited by
Target article
Can quantum probability provide a new direction for cognitive modeling?
Related commentaries (34)
A quantum of truth? Querying the alternative benchmark for human cognition
At home in the quantum world
Beyond quantum probability: Another formalism shared by quantum physics and psychology
Can quantum probability help analyze the behavior of functional brain networks?
Cognition in Hilbert space
Cognitive architectures combine formal and heuristic approaches
Cold and hot cognition: Quantum probability theory and realistic psychological modeling
Disentangling the order effect from the context effect: Analogies, homologies, and quantum probability
Does quantum uncertainty have a place in everyday applied statistics?
Grounding quantum probability in psychological mechanism
If quantum probability = classical probability + bounded cognition; is this good, bad, or unnecessary?
Is quantum probability rational?
Limitations of the Dirac formalism as a descriptive framework for cognition
On the quantum principles of cognitive learning
Physics envy: Trying to fit a square peg into a round hole
Processes models, environmental analyses, and cognitive architectures: Quo vadis quantum probability theory?
Quantum mathematical cognition requires quantum brain biology: The “Orch OR” theory
Quantum modeling of common sense
Quantum models of cognition as Orwellian newspeak
Quantum probability and cognitive modeling: Some cautions and a promising direction in modeling physics learning
Quantum probability and comparative cognition
Quantum probability and conceptual combination in conjunctions
Quantum probability, choice in large worlds, and the statistical structure of reality
Quantum probability, intuition, and human rationality
Quantum structure and human thought
Realistic neurons can compute the operations needed by quantum probability theory and other vector symbolic architectures
Signal detection theory in Hilbert space
The (virtual) conceptual necessity of quantum probabilities in cognitive psychology
The cognitive economy: The probabilistic turn in psychology and human cognition
The implicit possibility of dualism in quantum probabilistic cognitive modeling
Uncertainty about the value of quantum probability for cognitive modeling
What are the mechanics of quantum cognition?
What's the predicted outcome? Explanatory and predictive properties of the quantum probability framework
Why quantum probability does not explain the conjunction fallacy
Author response
Quantum principles in psychology: The debate, the evidence, and the future