Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Tang, Rendong
Dai, Jiapei
and
Ward, Lawrence M.
2014.
Spatiotemporal Imaging of Glutamate-Induced Biophotonic Activities and Transmission in Neural Circuits.
PLoS ONE,
Vol. 9,
Issue. 1,
p.
e85643.
Bruza, Peter D.
Wang, Zheng
and
Busemeyer, Jerome R.
2015.
Quantum cognition: a new theoretical approach to psychology.
Trends in Cognitive Sciences,
Vol. 19,
Issue. 7,
p.
383.
Chai, Weitai
Han, Zhengrong
Wang, Zhuo
Li, Zehua
Xiao, Fangyan
Sun, Yan
Dai, Yanfeng
Tang, Rendong
and
Dai, Jiapei
2018.
Biophotonic Activity and Transmission Mediated by Mutual Actions of Neurotransmitters are Involved in the Origin and Altered States of Consciousness.
Neuroscience Bulletin,
Vol. 34,
Issue. 3,
p.
534.
Busemeyer, Jerome R.
and
Wang, Zheng
2019.
Primer on quantum cognition.
The Spanish Journal of Psychology,
Vol. 22,
Issue. ,
Różyk-Myrta, Alicja
Brodziak, Andrzej
and
Muc-Wierzgoń, Małgorzata
2021.
Neural Circuits, Microtubule Processing, Brain’s Electromagnetic Field—Components of Self-Awareness.
Brain Sciences,
Vol. 11,
Issue. 8,
p.
984.
Ho, Johnny K. W.
and
Hoorn, Johan F.
2022.
Quantum affective processes for multidimensional decision-making.
Scientific Reports,
Vol. 12,
Issue. 1,
2023.
The Cambridge Handbook of Computational Cognitive Sciences.
p.
27.
Busemeyer, Jerome R.
and
Pothos, Emmanuel M.
2023.
The Cambridge Handbook of Computational Cognitive Sciences.
p.
242.
Target article
Can quantum probability provide a new direction for cognitive modeling?
Related commentaries (34)
A quantum of truth? Querying the alternative benchmark for human cognition
At home in the quantum world
Beyond quantum probability: Another formalism shared by quantum physics and psychology
Can quantum probability help analyze the behavior of functional brain networks?
Cognition in Hilbert space
Cognitive architectures combine formal and heuristic approaches
Cold and hot cognition: Quantum probability theory and realistic psychological modeling
Disentangling the order effect from the context effect: Analogies, homologies, and quantum probability
Does quantum uncertainty have a place in everyday applied statistics?
Grounding quantum probability in psychological mechanism
If quantum probability = classical probability + bounded cognition; is this good, bad, or unnecessary?
Is quantum probability rational?
Limitations of the Dirac formalism as a descriptive framework for cognition
On the quantum principles of cognitive learning
Physics envy: Trying to fit a square peg into a round hole
Processes models, environmental analyses, and cognitive architectures: Quo vadis quantum probability theory?
Quantum mathematical cognition requires quantum brain biology: The “Orch OR” theory
Quantum modeling of common sense
Quantum models of cognition as Orwellian newspeak
Quantum probability and cognitive modeling: Some cautions and a promising direction in modeling physics learning
Quantum probability and comparative cognition
Quantum probability and conceptual combination in conjunctions
Quantum probability, choice in large worlds, and the statistical structure of reality
Quantum probability, intuition, and human rationality
Quantum structure and human thought
Realistic neurons can compute the operations needed by quantum probability theory and other vector symbolic architectures
Signal detection theory in Hilbert space
The (virtual) conceptual necessity of quantum probabilities in cognitive psychology
The cognitive economy: The probabilistic turn in psychology and human cognition
The implicit possibility of dualism in quantum probabilistic cognitive modeling
Uncertainty about the value of quantum probability for cognitive modeling
What are the mechanics of quantum cognition?
What's the predicted outcome? Explanatory and predictive properties of the quantum probability framework
Why quantum probability does not explain the conjunction fallacy
Author response
Quantum principles in psychology: The debate, the evidence, and the future