Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T05:15:38.218Z Has data issue: false hasContentIssue false

Processes models, environmental analyses, and cognitive architectures: Quo vadis quantum probability theory?

Published online by Cambridge University Press:  14 May 2013

Julian N. Marewski
Affiliation:
University of Lausanne, Quartier UNIL-Dorigny, 1015 Lausanne, Switzerland. Julian.Marewski@unil.chhttp://www.hec.unil.ch/people/jmarewskiUlrich.Hoffrage@unil.chhttp://www.hec.unil.ch/people/uhoffrage
Ulrich Hoffrage
Affiliation:
University of Lausanne, Quartier UNIL-Dorigny, 1015 Lausanne, Switzerland. Julian.Marewski@unil.chhttp://www.hec.unil.ch/people/jmarewskiUlrich.Hoffrage@unil.chhttp://www.hec.unil.ch/people/uhoffrage

Abstract

A lot of research in cognition and decision making suffers from a lack of formalism. The quantum probability program could help to improve this situation, but we wonder whether it would provide even more added value if its presumed focus on outcome models were complemented by process models that are, ideally, informed by ecological analyses and integrated into cognitive architectures.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C. & Qin, Y. (2004) An integrated theory of the mind. Psychological Review 111:1036–60.Google Scholar
Anderson, J. R. & Lebiere, C. (2003) The Newell Test for a theory of cognition. Behavioral and Brain Sciences 26:587640.Google Scholar
Anderson, J. R. & Schooler, L. J. (1991) Reflections of the environment in memory. Psychological Science 2:396408.Google Scholar
Berg, N. & Gigerenzer, G. (2010) As-if behavioral economics: Neoclassical economics in disguise? History of Economic Ideas 18:133–66.Google Scholar
Brandstätter, E., Gigerenzer, G. & Hertwig, R. (2006) The priority heuristic: Making choices without trade-offs. Psychological Review 113:409–32.CrossRefGoogle ScholarPubMed
Bröder, A. & Gaissmaier, W. (2007) Sequential processing of cues in memory-based multi-attribute decisions. Psychonomic Bulletin & Review 14:895900.Google Scholar
Brunswik, E. (1964) Scope and aspects of the cognitive problem. In: Contemporary approaches to cognition, ed. Bruner, J. S., Brunswik, E., Festinger, L., Heider, F., Muenzinger, K. F., Osgood, C. E. & Rapaport, D., pp. 531. Harvard University Press.Google Scholar
Dougherty, M. R. P., Gettys, C. F. & Ogden, E. E. (1999) Minerva-DM: A memory processes model for judgments of likelihood. Psychological Review 106:180209.CrossRefGoogle Scholar
Gigerenzer, G. (1996) On narrow norms and vague heuristics: A reply to Kahneman and Tversky. Psychological Review 103:592–96.Google Scholar
Gigerenzer, G., Hoffrage, U. & Kleinbölting, H. (1991) Probabilistic mental models: A Brunswikian theory of confidence. Psychological Review 98:506–28.Google Scholar
Gigerenzer, G. & Selten, R., ed. (2001) Bounded rationality: The adaptive toolbox. MIT Press.Google Scholar
Griffiths, T. L., Kemp, C. & Tenenbaum, J. B. (2008) Bayesian models of cognition. In: Cambridge handbook of computational cognitive modeling, ed. Sun, R., pp. 59100. Cambridge University Press.Google Scholar
Hertwig, R., Hoffrage, U. & the ABC Research Group (2013) Simple heuristics in a social world. Oxford University Press.Google Scholar
Hertwig, R., Hoffrage, U. & Martignon, L. (1999) Quick estimation: Letting the environment do the work. In: Simple heuristics that make us smart, Gigerenzer, G., Todd, P. M. & the ABC Research Group, pp. 209–34. Oxford University Press.Google Scholar
Johnson, E.J., Schulte-Mecklenbeck, M. & Willemsen, M. (2008) Process models deserve process data: Comment on Brandstätter, Gigerenzer & Hertwig (2006). Psychological Review 115:263–72.Google Scholar
Kahneman, D., Slovic, P. & Tversky, A. (1982) Judgment under uncertainty: Heuristics and biases. Cambridge University Press.Google Scholar
Marewski, J. N. & Mehlhorn, K. (2011) Using the ACT-R architecture to specify 39 quantitative process models of decision making. Judgment and Decision Making 6(6):439519.Google Scholar
Marewski, J. N., Pohl, R. F. & Vitouch, O. (2010) Recognition-based judgments and decisions: Introduction to the special issue (Vol. 1). Judgment and Decision Making 5:207–15.Google Scholar
Marewski, J. N. & Schooler, L. J. (2011) Cognitive niches: An ecological model of strategy selection. Psychological Review 118(3):393437.Google Scholar
Nellen, S. (2003) The use of the “take-the-best” heuristic under different conditions, modelled with ACT-R. In: Proceedings of the fifth international conference on cognitive modelling, ed. Detje, F., Dörner, D. & Schaub, H., pp. 171–76. Universitätsverlag Bamberg.Google Scholar
Oaksford, M. & Chater, N. (1998) Rational models of cognition. Oxford University Press.Google Scholar
Pachur, T., Hertwig, R. & Rieskamp, J. (2013) The mind as an intuitive pollster: Frugal search in social spaces. In: Simple heuristics in a social world, ed. Hertwig, R., Hoffrage, U. & the ABC Research Group, pp. 261–91. Oxford University Press.Google Scholar
Reisen, N., Hoffrage, U. & Mast, F. W. (2008) Identifying decision strategies in a consumer choice situation. Judgment and Decision Making 3:641–58.Google Scholar
Schooler, L. J. & Hertwig, R. (2005) How forgetting aids heuristic inference. Psychological Review 112(3):610–28.Google Scholar
Simon, H. A. (1956) Rational choice and the structure of the environment. Psychological Review 63:129–38.Google Scholar
Sloman, S. A. (1996) The empirical case for two systems of reasoning. Psychological Bulletin 119:322.Google Scholar
Todd, P. M., Gigerenzer, G. & the ABC Research Group (2012) Ecological rationality: Intelligence in the world. Oxford University Press.Google Scholar
Volz, K. G., Schooler, L. J. & von Cramon, D. Y. (2010) It just felt right: The neural correlates of the fluency heuristic. Consciousness and Cognition 19:829–37.Google Scholar