We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recently, Alanazi et al. [‘Refining overpartitions by properties of nonoverlined parts’, Contrib. Discrete Math.17(2) (2022), 96–111] considered overpartitions wherein the nonoverlined parts must be $\ell $-regular, that is, the nonoverlined parts cannot be divisible by the integer $\ell $. In the process, they proved a general parity result for the corresponding enumerating functions. They also proved some specific congruences for the case $\ell =3$. In this paper we use elementary generating function manipulations to significantly extend this set of known congruences for these functions.
We establish some inequalities that arise from truncating Lerch sums and derive uniform asymptotic formulae for the spt-crank of ordinary partitions. The uniform asymptotic formulae improve upon a result of Mao [‘Asymptotic formulas for spt-crank of partitions’, J. Math. Anal. Appl.460(1) (2018), 121–139].
An integer partition of a positive integer n is called t-core if none of its hook lengths is divisible by t. Gireesh et al. [‘A new analogue of t-core partitions’, Acta Arith.199 (2021), 33–53] introduced an analogue $\overline {a}_t(n)$ of the t-core partition function. They obtained multiplicative formulae and arithmetic identities for $\overline {a}_t(n)$ where $t \in \{3,4,5,8\}$ and studied the arithmetic density of $\overline {a}_t(n)$ modulo $p_i^{\,j}$ where $t=p_1^{a_1}\cdots p_m^{a_m}$ and $p_i\geq 5$ are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, J. Integer Seq.27 (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by $\overline {a}_5(n)$. We study the arithmetic densities of $\overline {a}_t(n)$ modulo arbitrary powers of 2 and 3 for $t=3^\alpha m$ where $\gcd (m,6)$=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, Int. J. Number Theory1 (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for $\overline {a}_3(n)$ modulo arbitrary powers of 2.
In his 1984 AMS Memoir, Andrews introduced the family of functions $c\phi_k(n)$, the number of k-coloured generalized Frobenius partitions of n. In 2019, Chan, Wang and Yang systematically studied the arithmetic properties of $\textrm{C}\Phi_k(q)$ for $2\leq k\leq17$ by utilizing the theory of modular forms, where $\textrm{C}\Phi_k(q)$ denotes the generating function of $c\phi_k(n)$. In this paper, we first establish another expression of $\textrm{C}\Phi_{12}(q)$ with integer coefficients, then prove some congruences modulo small powers of 3 for $c\phi_{12}(n)$ by using some parameterized identities of theta functions due to A. Alaca, S. Alaca and Williams. Finally, we conjecture three families of congruences modulo powers of 3 satisfied by $c\phi_{12}(n)$.
Ranks of partitions play an important role in the theory of partitions. They provide combinatorial interpretations for Ramanujan’s famous congruences for partition functions. We establish a family of congruences modulo powers of $5$ for ranks of partitions.
We show that certain sums of partition numbers are divisible by multiples of 2 and 3. For example, if $p(n)$ denotes the number of unrestricted partitions of a positive integer n (and $p(0)=1$, $p(n)=0$ for $n<0$), then for all nonnegative integers m,
Noting a curious link between Andrews’ even-odd crank and the Stanley rank, we adopt a combinatorial approach building on the map of conjugation and continue the study of integer partitions with parts separated by parity. Our motivation is twofold. Firstly, we derive results for certain restricted partitions with even parts below odd parts. These include a Franklin-type involution proving a parametrized identity that generalizes Andrews’ bivariate generating function, and two families of Andrews–Beck type congruences. Secondly, we introduce several new subsets of partitions that are stable (i.e. invariant under conjugation) and explore their connections with three third-order mock theta functions $\omega (q)$, $\nu (q)$, and $\psi ^{(3)}(q)$, introduced by Ramanujan and Watson.
In 2007, Andrews introduced Durfee symbols and k-marked Durfee symbols so as to give a combinatorial interpretation for the symmetrized moment function $\eta _{2k}(n)$ of ranks of partitions. He also considered the relations between odd Durfee symbols and the mock theta function $\omega (q)$, and proved that the $2k$th moment function $\eta _{2k}^0(n)$ of odd ranks of odd Durfee symbols counts $(k+1)$-marked odd Durfee symbols of n. In this paper, we first introduce the definition of symmetrized positive odd rank moments $\eta _k^{0+}(n)$ and prove that for all $1\leq i\leq k+1$, $\eta _{2k-1}^{0+}(n)$ is equal to the number of $(k+1)$-marked odd Durfee symbols of n with the ith odd rank equal to zero and $\eta _{2k}^{0+}(n)$ is equal to the number of $(k+1)$-marked Durfee symbols of n with the ith odd rank being positive. Then we calculate the generating functions of $\eta _{k}^{0+}(n)$ and study its asymptotic behavior. Finally, we use Wright’s variant of the Hardy–Ramanujan circle method to obtain an asymptotic formula for $\eta _{k}^{0+}(n)$.
We study some combinatorial properties of higher-dimensional partitions which generalize plane partitions. We present a natural bijection between d-dimensional partitions and d-dimensional arrays of nonnegative integers. This bijection has a number of important applications. We introduce a statistic on d-dimensional partitions, called the corner-hook volume, whose generating function has the formula of MacMahon’s conjecture. We obtain multivariable formulas whose specializations give analogues of various formulas known for plane partitions. We also introduce higher-dimensional analogues of dual stable Grothendieck polynomials which are quasisymmetric functions and whose specializations enumerate higher-dimensional partitions of a given shape. Finally, we show probabilistic connections with a directed last passage percolation model in $\mathbb {Z}^d$.
In 2019, Andrews and Newman [‘Partitions and the minimal excludant’, Ann. Comb.23(2) (2019), 249–254] introduced the arithmetic function $\sigma \textrm {mex}(n)$, which denotes the sum of minimal excludants over all the partitions of n. Baruah et al. [‘A refinement of a result of Andrews and Newman on the sum of minimal excludants’, Ramanujan J., to appear] showed that the sum of minimal excludants over all the partitions of n is the same as the number of partition pairs of n into distinct parts. They proved three congruences modulo $4$ and $8$ for two functions appearing in this refinement and conjectured two further congruences modulo $8$ and $16$. We confirm these two conjectures by using q-series manipulations and modular forms.
Formulas evaluating differences of integer partitions according to the parity of the parts are referred to as Legendre theorems. In this paper we give some formulas of Legendre type for overpartitions.
Let $Q(n)$ denote the number of partitions of n into distinct parts. Merca [‘Ramanujan-type congruences modulo 4 for partitions into distinct parts’, An. Şt. Univ. Ovidius Constanţa30(3) (2022), 185–199] derived some congruences modulo $4$ and $8$ for $Q(n)$ and posed a conjecture on congruences modulo powers of $2$ enjoyed by $Q(n)$. We present an approach which can be used to prove a family of internal congruence relations modulo powers of $2$ concerning $Q(n)$. As an immediate consequence, we not only prove Merca’s conjecture, but also derive many internal congruences modulo powers of $2$ satisfied by $Q(n)$. Moreover, we establish an infinite family of congruence relations modulo $4$ for $Q(n)$.
Lin introduced the partition function $\text {PDO}_t(n)$, which counts the total number of tagged parts over all the partitions of n with designated summands in which all parts are odd. Lin also proved some congruences modulo 3 and 9 for $\text {PDO}_t(n)$, and conjectured certain congruences modulo $3^{k+2}$ for $k\geq 0$. He proved the conjecture for $k=0$ and $k=1$ [‘The number of tagged parts over the partitions with designated summands’, J. Number Theory184 (2018), 216–234]. We prove the conjecture for $k=2$. We also study the lacunarity of $\text {PDO}_t(n)$ modulo arbitrary powers of 2 and 3. Using nilpotency of Hecke operators, we prove that there exists an infinite family of congruences modulo any power of 2 satisfied by $\text {PDO}_t(n)$.
Recently, when studying intricate connections between Ramanujan’s theta functions and a class of partition functions, Banerjee and Dastidar [‘Ramanujan’s theta functions and parity of parts and cranks of partitions’, Ann. Comb., to appear] studied some arithmetic properties for $c_o(n)$, the number of partitions of n with odd crank. They conjectured a congruence modulo $4$ satisfied by $c_o(n)$. We confirm the conjecture and evaluate $c_o(4n)$ modulo $8$ by dissecting some q-series into even powers. Moreover, we give a conjecture on the density of divisibility of odd cranks modulo 4, 8 and 16.
A partition $\lambda $ of n is said to be nearly self-conjugate if the Ferrers graph of $\lambda $ and its transpose have exactly $n-1$ cells in common. The generating function of the number of such partitions was first conjectured by Campbell and recently confirmed by Campbell and Chern (‘Nearly self-conjugate integer partitions’, submitted for publication). We present a simple and direct analytic proof and a combinatorial proof of an equivalent statement.
In 2012, Andrews and Merca proved a truncated theorem on Euler's pentagonal number theorem. Motivated by the works of Andrews and Merca, Guo and Zeng deduced truncated versions for two other classical theta series identities of Gauss. Very recently, Xia et al. proved new truncated theorems of the three classical theta series identities by taking different truncated series than the ones chosen by Andrews–Merca and Guo–Zeng. In this paper, we provide a unified treatment to establish new truncated versions for the three identities of Euler and Gauss based on a Bailey pair due to Lovejoy. These new truncated identities imply the results proved by Andrews–Merca, Wang–Yee, and Xia–Yee–Zhao.
Let
$p_t(a,b;n)$
denote the number of partitions of n such that the number of t-hooks is congruent to
$a \bmod {b}$
. For
$t\in \{2, 3\}$
, arithmetic progressions
$r_1 \bmod {m_1}$
and
$r_2 \bmod {m_2}$
on which
$p_t(r_1,m_1; m_2 n + r_2)$
vanishes were established in recent work by Bringmann, Craig, Males and Ono [‘Distributions on partitions arising from Hilbert schemes and hook lengths’, Forum Math. Sigma10 (2022), Article no. e49] using the theory of modular forms. Here we offer a direct combinatorial proof of this result using abaci and the theory of t-cores and t-quotients.
Let
$\mathcal {C}_n =\left [\chi _{\lambda }(\mu )\right ]_{\lambda , \mu }$
be the character table for
$S_n,$
where the indices
$\lambda $
and
$\mu $
run over the
$p(n)$
many integer partitions of
$n.$
In this note, we study
$Z_{\ell }(n),$
the number of zero entries
$\chi _{\lambda }(\mu )$
in
$\mathcal {C}_n,$
where
$\lambda $
is an
$\ell $
-core partition of
$n.$
For every prime
$\ell \geq 5,$
we prove an asymptotic formula of the form
where
$\sigma _{\ell }(n)$
is a twisted Legendre symbol divisor function,
$\delta _{\ell }:=(\ell ^2-1)/24,$
and
$1/\alpha _{\ell }>0$
is a normalization of the Dirichlet L-value
$L\left (\left ( \frac {\cdot }{\ell } \right ),\frac {\ell -1}{2}\right ).$
For primes
$\ell $
and
$n>\ell ^6/24,$
we show that
$\chi _{\lambda }(\mu )=0$
whenever
$\lambda $
and
$\mu $
are both
$\ell $
-cores. Furthermore, if
$Z^*_{\ell }(n)$
is the number of zero entries indexed by two
$\ell $
-cores, then, for
$\ell \geq 5$
, we obtain the asymptotic
Andrews [Generalized Frobenius Partitions, Memoirs of the American Mathematical Society, 301 (American Mathematical Society, Providence, RI, 1984)] defined two families of functions,
$\phi _k(n)$
and
$c\phi _k(n),$
enumerating two types of combinatorial objects which he called generalised Frobenius partitions. Andrews proved a number of Ramanujan-like congruences satisfied by specific functions within these two families. Numerous other authors proved similar results for these functions, often with a view towards a specific choice of the parameter
$k.$
Our goal is to identify an infinite family of values of k such that
$\phi _k(n)$
is even for all n in a specific arithmetic progression; in particular, we prove that, for all positive integers
$\ell ,$
all primes
$p\geq 5$
and all values
$r, 0 < r < p,$
such that
$24r+1$
is a quadratic nonresidue modulo
$p,$
for all
$n\geq 0.$
Our proof of this result is truly elementary, relying on a lemma from Andrews’ memoir, classical q-series results and elementary generating function manipulations. Such a result, which holds for infinitely many values of
$k,$
is rare in the study of arithmetic properties satisfied by generalised Frobenius partitions, primarily because of the unwieldy nature of the generating functions in question.
Let $\mathcal {O}(\pi )$ denote the number of odd parts in an integer partition $\pi$. In 2005, Stanley introduced a new statistic $\operatorname {srank}(\pi )=\mathcal {O}(\pi )-\mathcal {O}(\pi ')$, where $\pi '$ is the conjugate of $\pi$. Let $p(r,\,m;n)$ denote the number of partitions of $n$ with srank congruent to $r$ modulo $m$. Generating function identities, congruences and inequalities for $p(0,\,4;n)$ and $p(2,\,4;n)$ were then established by a number of mathematicians, including Stanley, Andrews, Swisher, Berkovich and Garvan. Motivated by these works, we deduce some generating functions and inequalities for $p(r,\,m;n)$ with $m=16$ and $24$. These results are refinements of some inequalities due to Swisher.