We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Describing the equality conditions of the Alexandrov–Fenchel inequality [Ale37] has been a major open problem for decades. We prove that in the case of convex polytopes, this description is not in the polynomial hierarchy unless the polynomial hierarchy collapses to a finite level. This is the first hardness result for the problem and is a complexity counterpart of the recent result by Shenfeld and van Handel [SvH23], which gave a geometric characterization of the equality conditions. The proof involves Stanley’s [Sta81] order polytopes and employs poset theoretic technology.
Let $x\in [0,1)$ be an irrational number and let $x=[a_{1}(x),a_{2}(x),\ldots ]$ be its continued fraction expansion with partial quotients $\{a_{n}(x): n\geq 1\}$. Given a natural number m and a vector $(x_{1},\ldots ,x_{m})\in [0,1)^{m},$ we derive the asymptotic behaviour of the shortest distance function
$$ \begin{align*} M_{n,m}(x_{1},\ldots,x_{m})=\max\{k\in \mathbb{N}: a_{i+j}(x_{1})=\cdots= a_{i+j}(x_{m}) \ \text{for}~ j=1,\ldots,k \mbox{ and some } i \mbox{ with } 0\leq i \leq n-k\}, \end{align*} $$
which represents the run-length of the longest block of the same symbol among the first n partial quotients of $(x_{1},\ldots ,x_{m}).$ We also calculate the Hausdorff dimension of the level sets and exceptional sets arising from the shortest distance function.
Following Bridgeman, we demonstrate several families of infinite dilogarithm identities associated with Fibonacci numbers, Lucas numbers, convergents of continued fractions of even periods, and terms arising from various recurrence relations.
When a page, represented by the interval
$[0,1],$
is folded right over left
$ n$
times, the right-hand fold contains a sequence of points. We specify these points and the order in which they appear in each fold. We also determine exactly where in the folded structure any point in
$[0,1]$
appears and, given any point on the bottom line of the structure, which point lies at each level above it.
We define a family
$\mathcal {B}(t)$
of compact subsets of the unit interval which provides a filtration of the set of numbers whose continued fraction expansion has bounded digits. We study how the set
$\mathcal {B}(t)$
changes as the parameter t ranges in
$[0,1]$
, and see that the family undergoes period-doubling bifurcations and displays the same transition pattern from periodic to chaotic behaviour as the family of real quadratic polynomials. The set
$\mathcal {E}$
of bifurcation parameters is a fractal set of measure zero and Hausdorff dimension
$1$
. The Hausdorff dimension of
$\mathcal {B}(t)$
varies continuously with the parameter, and we show that the dimension of each individual set equals the dimension of the corresponding section of the bifurcation set
$\mathcal {E}$
.
We construct eta-quotient representations of two families of q-series involving the Rogers–Ramanujan continued fraction by establishing related recurrence relations. We also display how these eta-quotient representations can be utilised to dissect certain q-series identities.
We introduce a notion of $q$-deformed rational numbers and $q$-deformed continued fractions. A $q$-deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$-deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$-rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$-deformation of the Farey graph, matrix presentations and $q$-continuants are given, as well as a relation to the Jones polynomial of rational knots.
for $n\ges 0$. In this paper, we obtain the relation between the Jacobi continued fraction of the ordinary generating function of yn(q) and that of xn(q). We also prove that the transformation preserves q-TPr+1 (q-TP) property of the Hankel matrix $[x_{i+j}(q)]_{i,j \ges 0}$, in particular for r = 2,3, implying the r-q-log-convexity of the sequence $\{y_n(q)\}_{n\ges 0}$. As applications, we can give the continued fraction expressions of Eulerian polynomials of types A and B, derangement polynomials types A and B, general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. In addition, we also prove the strong q-log-convexity of derangement polynomials type B, Dowling polynomials and Tanny-geometric polynomials and 3-q-log-convexity of general Eulerian polynomials, Dowling polynomials and Tanny-geometric polynomials. We also present a new proof of the result of Pólya and Szegö about the binomial convolution preserving the Stieltjes moment property and a new proof of the result of Zhu and Sun on the binomial transformation preserving strong q-log-convexity.
In 1984, K. Mahler asked how well elements in the Cantor middle third set can be approximated by rational numbers from that set and by rational numbers outside of that set. We consider more general missing digit sets $C$ and construct numbers in $C$ that are arbitrarily well approximable by rationals in $C$, but badly approximable by rationals outside of $C$. More precisely, we construct them so that all but finitely many of their convergents lie in $C$.
We construct a random model to study the distribution of class numbers in special families of real quadratic fields ${\open Q}(\sqrt d )$ arising from continued fractions. These families are obtained by considering continued fraction expansions of the form $\sqrt {D(n)} = [f(n),\overline {u_1,u_2, \ldots ,u_{s-1} ,2f(n)]} $ with fixed coefficients u1, …, us−1 and generalize well-known families such as Chowla's 4n2 + 1, for which analogous results were recently proved by Dahl and Lamzouri [‘The distribution of class numbers in a special family of real quadratic fields’, Trans. Amer. Math. Soc. (2018), 6331–6356].
We establish a combinatorial realization of continued fractions as quotients of cardinalities of sets. These sets are sets of perfect matchings of certain graphs, the snake graphs, that appear naturally in the theory of cluster algebras. To a continued fraction $[a_{1},a_{2},\ldots ,a_{n}]$ we associate a snake graph ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ such that the continued fraction is the quotient of the number of perfect matchings of ${\mathcal{G}}[a_{1},a_{2},\ldots ,a_{n}]$ and ${\mathcal{G}}[a_{2},\ldots ,a_{n}]$. We also show that snake graphs are in bijection with continued fractions. We then apply this connection between cluster algebras and continued fractions in two directions. First we use results from snake graph calculus to obtain new identities for the continuants of continued fractions. Then we apply the machinery of continued fractions to cluster algebras and obtain explicit direct formulas for quotients of elements of the cluster algebra as continued fractions of Laurent polynomials in the initial variables. Building on this formula, and using classical methods for infinite periodic continued fractions, we also study the asymptotic behavior of quotients of elements of the cluster algebra.
The Chowla conjecture states that if $t$ is any given positive integer, there are infinitely many prime positive integers $N$ such that $\text{Per}\left( \sqrt{N} \right)\,=\,t$, where $\text{Per}\left( \sqrt{N} \right)$ is the period length of the continued fraction expansion for $\sqrt{N}$. C. Friesen proved that, for any $k\,\in \,\mathbb{N}$, there are infinitely many square-free integers $N$, where the continued fraction expansion of $\sqrt{N}$ has a fixed period. In this paper, we describe all polynomials $Q\,\in \,{{\mathbb{F}}_{q}}\left[ X \right]$ for which the continued fraction expansion of $\sqrt{Q}$ has a fixed period. We also give a lower bound of the number of monic, non-squares polynomials $Q$ such that $\deg \,Q=\,2d$ and $Per\sqrt{Q}\,=\,t$.
In this paper we give a lower bound with respect to block length for the trace of non-elliptic conjugacy classes of the Hecke groups. One consequence of our bound is that there are finitely many conjugacy classes of a given trace in anyHecke group. We show that another consequence of our bound is that class numbers are finite for related hyperbolic $\mathbb{Z}\left[ \text{ }\!\!\lambda\!\!\text{ } \right]$-binary quadratic forms. We give canonical class representatives and calculate class numbers for some classes of hyperbolic $\mathbb{Z}\left[ \text{ }\!\!\lambda\!\!\text{ } \right]$-binary quadratic forms.
Dufresnoy and Pisot characterized the smallest Pisot number of degree $n\,\ge \,3$ by giving explicitly its minimal polynomial. In this paper, we translate Dufresnoy and Pisot’s result to the Laurent series case. The aim of this paper is to prove that the minimal polynomial of the smallest Pisot element $\left( \text{SPE} \right)$ of degree $n$ in the field of formal power series over a finite field is given by $P\left( Y \right)\,=\,{{Y}^{n}}\,-\,\alpha X{{Y}^{n-1}}\,-{{\alpha }^{n}}$ where $\alpha $ is the least element of the finite field ${{\mathbb{F}}_{q}}\backslash \left\{ 0 \right\}$ (as a finite total ordered set). We prove that the sequence of SPEs of degree $n$ is decreasing and converges to $\alpha X$. Finally, we show how to obtain explicit continued fraction expansion of the smallest Pisot element over a finite field.
We provide a criterion for the central norm to be any value in the simple continued fraction expansion of $\sqrt{D}$ for any non-square integer $D\,>\,1$. We also provide a simple criterion for the solvability of the Pell equation ${{x}^{2}}\,-\,D{{y}^{2}}\,=\,-1$ in terms of congruence conditions modulo $D$.
We associate with the Farey tessellation of the upper half-plane an $\text{AF}$ algebra $\mathfrak{A}$ encoding the “cutting sequences” that define vertical geodesics. The Effros–Shen $\text{AF}$ algebras arise as quotients of $\mathfrak{A}$. Using the path algebra model for $\text{AF}$ algebras we construct, for each $\tau \,\,\in \,\,\left( 0 \right.,\left. \frac{1}{4} \right]$, projections $({{E}_{n}})$ in $\mathfrak{A}$ such that ${{E}_{n}}{{E}_{n\pm 1}}E\le \tau {{E}_{n}}$.
Let $C$ be the class of convex sequences of real numbers. The quadratic irrational numbers can be partitioned into two types as follows. If $\alpha$ is of the first type and $\left( {{c}_{k}} \right)\,\in C$, then $\sum{{{(-1)}^{\left\lfloor k\alpha \right\rfloor }}}{{c}_{k}}$ converges if and only if ${{c}_{k}}\log k\to 0$.
If $\alpha$ is of the second type and $\left( {{c}_{k}} \right)\,\in C$, then $\sum{{{(-1)}^{\left\lfloor k\alpha \right\rfloor }}}{{c}_{k}}$ converges if and only if $\sum{{{c}_{k}}/k}$ converges. An example of a quadratic irrational of the first type is $\sqrt{2}$, and an example of the second type is $\sqrt{3}$. The analysis of this problem relies heavily on the representation of $\alpha$ as a simple continued fraction and on properties of the sequences of partial sums $S\left( n \right)\,=\,{{\sum\nolimits_{k=1}^{n}{\left( -1 \right)}}^{\left\lfloor k\alpha \right\rfloor }}$ and double partial sums $T\left( n \right)\,=\,\sum\nolimits_{k=1}^{n}{\,S\left( k \right)}$.
In his celebrated memoir, Morgan Ward's definition of elliptic divisibility sequences has the remarkable feature that it does not become at all clear until deep into the paper that there exist nontrivial examples of such sequences. Even then, Ward's proof of the coherence of his definition relies on displaying a sequence of values of quotients of Weierstraß $\sigma$-functions. We give a direct proof of coherence and show, rather more generally, that a sequence defined by a so-called Somos relation of width 4 is always also given by three-term Somos relations of all larger widths $5, 6, 7, \ldots.$
We look at the simple continued fraction expansion of $\sqrt{D}$ for any $D\,=\,{{2}^{h}}c$ where $c\,>\,1$ is odd with a goal of determining necessary and sufficient conditions for the central norm (as determined by the infrastructure of the underlying real quadratic order therein) to be ${{2}^{h}}$. At the end of the paper, we also address the case where $D\,=\,c$ is odd and the central norm of $\sqrt{D}$ is equal to 2.