We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove the existence of a vector-valued cusp form for the full modular group for which the nth derivative of its L-function does not vanish under certain conditions. As an application, we generalize our result to Kohnen’s plus space and prove an analogous result for Jacobi forms.
Let f and g be two distinct normalized primitive holomorphic cusp forms of even integral weight $k_{1}$ and $k_{2}$ for the full modular group $SL(2,\mathbb {Z})$, respectively. Suppose that $\lambda _{f\times f\times f}(n)$ and $\lambda _{g\times g\times g}(n)$ are the n-th Dirichlet coefficient of the triple product L-functions $L(s,f\times f\times f)$ and $L(s,g\times g\times g)$. In this paper, we consider the sign changes of the sequence $\{\lambda _{f\times f\times f}(n)\}_{n\geq 1}$ and $\{\lambda _{f\times f\times f}(n)\lambda _{g\times g\times g}(n)\}_{n\geq 1}$ in short intervals and establish quantitative results for the number of sign changes for $n \leq x$, which improve the previous results.
Let $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm {GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg $L$-functions, where $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at $s=\frac {1}{2}$ for almost all $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each $\pi \in \mathfrak {F}_n$.
We study some analytic properties of the Asai lifts associated with cuspidal Hilbert modular forms, and prove sharp bounds for the second moment of their central L-values.
In this paper, we prove uniform bounds for $\operatorname {GL}(3)\times \operatorname {GL}(2) \ L$-functions in the $\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\phi $ be a Hecke–Maass cusp form for $\operatorname {SL}(3,\mathbb {Z})$ and f a Hecke–Maass cusp form for $\operatorname {SL}(2,\mathbb {Z})$ with the spectral parameter $t_f$. Then for $t\in \mathbb {R}$ and any $\varepsilon>0$, we have
In this article, we obtain transformation formulas analogous to the identity of Ramanujan, Hardy and Littlewood in the setting of primitive Maass cusp form over the congruence subgroup $\Gamma _0(N)$ and also provide an equivalent criterion of the grand Riemann hypothesis for the $L$-function associated with the primitive Maass cusp form over $\Gamma _0(N)$.
In this paper, we study the extreme values of the Rankin–Selberg L-functions associated with holomorphic cusp forms in the vertical direction. Assuming the generalised Riemann hypothesis (GRH), we prove that
We develop some asymptotics for a kernel function introduced by Kohnen and use them to estimate the number of normalised Hecke eigenforms in
$S_k(\Gamma _0(1))$
whose L-values are simultaneously nonvanishing at a given pair of points each of which lies inside the critical strip.
We explain how to develop the twisted doubling integrals for Brylinski–Deligne extensions of connected classical groups. This gives a family of global integrals which represent Euler products for this class of nonlinear extensions.
We improve upon the local bound in the depth aspect for sup-norms of newforms on $D^\times$, where $D$ is an indefinite quaternion division algebra over ${\mathbb {Q}}$. Our sup-norm bound implies a depth-aspect subconvexity bound for $L(1/2, f \times \theta _\chi )$, where $f$ is a (varying) newform on $D^\times$ of level $p^n$, and $\theta _\chi$ is an (essentially fixed) automorphic form on $\textrm {GL}_2$ obtained as the theta lift of a Hecke character $\chi$ on a quadratic field. For the proof, we augment the amplification method with a novel filtration argument and a recent counting result proved by the second-named author to reduce to showing strong quantitative decay of matrix coefficients of local newvectors along compact subsets, which we establish via $p$-adic stationary phase analysis. Furthermore, we prove a general upper bound in the level aspect for sup-norms of automorphic forms belonging to any family whose associated matrix coefficients have such a decay property.
We prove a functional equation for a vector valued real analytic Eisenstein series transforming with the Weil representation of $\operatorname{Sp}(n,\mathbb{Z})$ on $\mathbb{C}[(L^{\prime }/L)^{n}]$. By relating such an Eisenstein series with a real analytic Jacobi Eisenstein series of degree $n$, a functional equation for such an Eisenstein series is proved. Employing a doubling method for Jacobi forms of higher degree established by Arakawa, we transfer the aforementioned functional equation to a zeta function defined by the eigenvalues of a Jacobi eigenform. Finally, we obtain the analytic continuation and a functional equation of the standard $L$-function attached to a Jacobi eigenform, which was already proved by Murase, however in a different way.
This paper completes the construction of $p$-adic $L$-functions for unitary groups. More precisely, in Harris, Li and Skinner [‘$p$-adic $L$-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure’, Doc. Math.Extra Vol. (2006), 393–464 (electronic)], three of the authors proposed an approach to constructing such $p$-adic $L$-functions (Part I). Building on more recent results, including the first named author’s construction of Eisenstein measures and $p$-adic differential operators [Eischen, ‘A $p$-adic Eisenstein measure for unitary groups’, J. Reine Angew. Math.699 (2015), 111–142; ‘$p$-adic differential operators on automorphic forms on unitary groups’, Ann. Inst. Fourier (Grenoble)62(1) (2012), 177–243], Part II of the present paper provides the calculations of local $\unicode[STIX]{x1D701}$-integrals occurring in the Euler product (including at $p$). Part III of the present paper develops the formalism needed to pair Eisenstein measures with Hida families in the setting of the doubling method.
Let $d_{3}(n)$ be the divisor function of order three. Let $g$ be a Hecke–Maass form for $\unicode[STIX]{x1D6E4}$ with $\unicode[STIX]{x1D6E5}g=(1/4+t^{2})g$. Suppose that $\unicode[STIX]{x1D706}_{g}(n)$ is the $n$th Hecke eigenvalue of $g$. Using the Voronoi summation formula for $\unicode[STIX]{x1D706}_{g}(n)$ and the Kuznetsov trace formula, we estimate a shifted convolution sum of $d_{3}(n)$ and $\unicode[STIX]{x1D706}_{g}(n)$ and show that
This corrects and improves the result of the author [‘Shifted convolution sum of $d_{3}$ and the Fourier coefficients of Hecke–Maass forms’, Bull. Aust. Math. Soc.92 (2015), 195–204].
We characterize the cuspidal representations of $G_{2}$ whose standard ${\mathcal{L}}$-function admits a pole at $s=2$ as the image of the Rallis–Schiffmann lift for the commuting pair ($\widetilde{\text{SL}}_{2}$, $G_{2}$) in $\widetilde{\text{Sp}}_{14}$. The image consists of non-tempered representations. The main tool is the recent construction, by the second author, of a family of Rankin–Selberg integrals representing the standard ${\mathcal{L}}$-function.
We generalize a method of Conrey and Ghosh [Simple zeros of the Ramanujan $\unicode[STIX]{x1D70F}$-Dirichlet series. Invent. Math.94(2) (1988), 403–419] to prove quantitative estimates for simple zeros of modular form $L$-functions of arbitrary conductor.
The standard twist $F(s,\unicode[STIX]{x1D6FC})$ of $L$-functions $F(s)$ in the Selberg class has several interesting properties and plays a central role in the Selberg class theory. It is therefore natural to study its finer analytic properties, for example the functional equation. Here we deal with a special case, where $F(s)$ satisfies a functional equation with the same $\unicode[STIX]{x1D6E4}$-factor of the $L$-functions associated with the cusp forms of half-integral weight; for simplicity we present our results directly for such $L$-functions. We show that the standard twist $F(s,\unicode[STIX]{x1D6FC})$ satisfies a functional equation reflecting $s$ to $1-s$, whose shape is not far from a Riemann-type functional equation of degree 2 and may be regarded as a degree 2 analog of the Hurwitz–Lerch functional equation. We also deduce some results on the growth on vertical strips and on the distribution of zeros of $F(s,\unicode[STIX]{x1D6FC})$.
Inspired by a construction by Bump, Friedberg, and Ginzburg of a two-variable integral representation on $\text{GS}{{\text{p}}_{4}}$ for the product of the standard and spin $L$-functions, we give two similar multivariate integral representations. The first is a three-variable Rankin-Selberg integral for cusp forms on $\text{PG}{{\text{L}}_{4}}$ representing the product of the $L$-functions attached to the three fundamental representations of the Langlands $L$-group $\text{S}{{\text{L}}_{\text{4}}}\left( \text{C} \right)$. The second integral, which is closely related, is a two-variable Rankin-Selberg integral for cusp forms on $\text{PGU}\left( 2,\,2 \right)$ representing the product of the degree $8$ standard $L$-function and the degree $6$ exterior square $L$-function.
We prove an exact formula for the second moment of Rankin–Selberg $L$-functions $L(\frac{1}{2},f\times g)$ twisted by $\unicode[STIX]{x1D706}_{f}(p)$, where $g$ is a fixed holomorphic cusp form and $f$ is summed over automorphic forms of a given level $q$. The formula is a reciprocity relation that exchanges the twist parameter $p$ and the level $q$. The method involves the Bruggeman–Kuznetsov trace formula on both ends; finally the reciprocity relation is established by an identity of sums of Kloosterman sums.
We give a Rankin–Selberg integral representation for the Spin (degree eight) $L$-function on $\operatorname{PGSp}_{6}$ that applies to the cuspidal automorphic representations associated to Siegel modular forms. If $\unicode[STIX]{x1D70B}$ corresponds to a level-one Siegel modular form $f$ of even weight, and if $f$ has a nonvanishing maximal Fourier coefficient (defined below), then we deduce the functional equation and finiteness of poles of the completed Spin $L$-function $\unicode[STIX]{x1D6EC}(\unicode[STIX]{x1D70B},\text{Spin},s)$ of $\unicode[STIX]{x1D70B}$.
for $m,n$ positive integers, to all $s\in \mathbb{C}$. There are poles of the function corresponding to zeros of the Riemann zeta function and the spectral parameters of Maass forms. The analytic properties of this function are rather delicate. It turns out that the spectral expansion of the zeta function converges only in a left half-plane, disjoint from the region of absolute convergence of the Dirichlet series, even though they both are analytic expressions of the same meromorphic function on the entire complex plane.