We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We construct, over any CM field, compatible systems of $l$-adic Galois representations that appear in the cohomology of algebraic varieties and have (for all $l$) algebraic monodromy groups equal to the exceptional group of type $E_{6}$.
Let $p$ and $\ell$ be distinct primes, and let $\overline{\unicode[STIX]{x1D70C}}$ be an orthogonal or symplectic representation of the absolute Galois group of an $\ell$-adic field over a finite field of characteristic $p$. We define and study a liftable deformation condition of lifts of $\overline{\unicode[STIX]{x1D70C}}$ ‘ramified no worse than $\overline{\unicode[STIX]{x1D70C}}$’, generalizing the minimally ramified deformation condition for $\operatorname{GL}_{n}$ studied in Clozel et al. [Automorphy for some$l$-adic lifts of automorphic mod$l$Galois representations, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 1–181; MR 2470687 (2010j:11082)]. The key insight is to restrict to deformations where an associated unipotent element does not change type when deforming. This requires an understanding of nilpotent orbits and centralizers of nilpotent elements in the relative situation, not just over fields.
Let $p$ be a prime number and $F$ a totally real number field. For each prime $\mathfrak{p}$ of $F$ above $p$ we construct a Hecke operator $T_{\mathfrak{p}}$ acting on $(\text{mod}\,p^{m})$ Katz Hilbert modular classes which agrees with the classical Hecke operator at $\mathfrak{p}$ for global sections that lift to characteristic zero. Using these operators and the techniques of patching complexes of Calegari and Geraghty we prove that the Galois representations arising from torsion Hilbert modular classes of parallel weight $\mathbf{1}$ are unramified at $p$ when $[F:\mathbb{Q}]=2$. Some partial and some conjectural results are obtained when $[F:\mathbb{Q}]>2$.
Suppose that $F/F^{+}$ is a CM extension of number fields in which the prime $p$ splits completely and every other prime is unramified. Fix a place $w|p$ of $F$. Suppose that $\overline{r}:\operatorname{Gal}(\overline{F}/F)\rightarrow \text{GL}_{3}(\overline{\mathbb{F}}_{p})$ is a continuous irreducible Galois representation such that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ is upper-triangular, maximally non-split, and generic. If $\overline{r}$ is automorphic, and some suitable technical conditions hold, we show that $\overline{r}|_{\operatorname{Gal}(\overline{F}_{w}/F_{w})}$ can be recovered from the $\text{GL}_{3}(F_{w})$-action on a space of mod $p$ automorphic forms on a compact unitary group. On the way we prove results about weights in Serre’s conjecture for $\overline{r}$, show the existence of an ordinary lifting of $\overline{r}$, and prove the freeness of certain Taylor–Wiles patched modules in this context. We also show the existence of many Galois representations $\overline{r}$ to which our main theorem applies.
A generalization of Serre’s Conjecture asserts that if $F$ is a totally real field, then certain characteristic $p$ representations of Galois groups over $F$ arise from Hilbert modular forms. Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois representation at primes over $p$. This characterization of the weights, which is formulated using $p$-adic Hodge theory, is known under mild technical hypotheses if $p>2$. In this paper we give, under the assumption that $p$ is unramified in $F$, a conjectural alternative description for the set of weights. Our approach is to use the Artin–Hasse exponential and local class field theory to construct bases for local Galois cohomology spaces in terms of which we identify subspaces that should correspond to ones defined using $p$-adic Hodge theory. The resulting conjecture amounts to an explicit description of wild ramification in reductions of certain crystalline Galois representations. It enables the direct computation of the set of Serre weights of a Galois representation, which we illustrate with numerical examples. A proof of this conjecture has been announced by Calegari, Emerton, Gee and Mavrides.
Given a commutative complete local noetherian ring $A$ with finite residue field $\boldsymbol{k}$, we show that there is a topologically finitely generated profinite group $\unicode[STIX]{x1D6E4}$ and an absolutely irreducible continuous representation $\overline{\unicode[STIX]{x1D70C}}:\unicode[STIX]{x1D6E4}\rightarrow \text{GL}_{n}(\boldsymbol{k})$ such that $A$ is a universal deformation ring for $\unicode[STIX]{x1D6E4},\overline{\unicode[STIX]{x1D70C}}$.
In this paper we perform an extensive study of the spaces of automorphic forms for $\text{GL}_{2}$ of weight $2$ and level $\mathfrak{n}$, for $\mathfrak{n}$ an ideal in the ring of integers of the quartic CM field $\mathbb{Q}({\it\zeta}_{12})$ of twelfth roots of unity. This study is conducted through the computation of the Hecke module $H^{\ast }({\rm\Gamma}_{0}(\mathfrak{n}),\mathbb{C})$, and the corresponding Hecke action. Combining this Hecke data with the Faltings–Serre method for proving equivalence of Galois representations, we are able to provide the first known examples of modular elliptic curves over this field.
In this paper, we study real-dihedral harmonic Maass forms and their Fourier coefficients. The main result expresses the values of Hilbert modular forms at twisted CM 0-cycles in terms of these Fourier coefficients. This is a twisted version of the main theorem in Bruinier and Yang [CM-values of Hilbert modular functions, Invent. Math. 163 (2006), 229–288] and provides evidence that the individual Fourier coefficients are logarithms of algebraic numbers in the appropriate real-quadratic field. From this result and numerical calculations, we formulate an algebraicity conjecture, which is an analogue of Stark’s conjecture in the setting of harmonic Maass forms. Also, we give a conjectural description of the primes appearing in CM-values of Hilbert modular functions.
We consider the classical theta operator ${\it\theta}$ on modular forms modulo $p^{m}$ and level $N$ prime to $p$, where $p$ is a prime greater than three. Our main result is that ${\it\theta}$ mod $p^{m}$ will map forms of weight $k$ to forms of weight $k+2+2p^{m-1}(p-1)$ and that this weight is optimal in certain cases when $m$ is at least two. Thus, the natural expectation that ${\it\theta}$ mod $p^{m}$ should map to weight $k+2+p^{m-1}(p-1)$ is shown to be false. The primary motivation for this study is that application of the ${\it\theta}$ operator on eigenforms mod $p^{m}$ corresponds to twisting the attached Galois representations with the cyclotomic character. Our construction of the ${\it\theta}$-operator mod $p^{m}$ gives an explicit weight bound on the twist of a modular mod $p^{m}$ Galois representation by the cyclotomic character.
In this article we explain how the results in our previous article on ‘algebraic Hecke characters and compatible systems of mod $p$ Galois representations over global fields’ allow one to attach a Hecke character to every cuspidal Drinfeld modular eigenform from its associated crystal that was constructed in earlier work of the author. On the technical side, we prove along the way a number of results on endomorphism rings of ${\it\tau}$-sheaves and crystals. These are needed to exhibit the close relation between Hecke operators as endomorphisms of crystals on the one side and Frobenius automorphisms acting on étale sheaves associated to crystals on the other. We also present some partial results on the ramification of Hecke characters associated to Drinfeld modular eigenforms. An important phenomenon absent from the case of classical modular forms is that ramification can also result from places of modular curves of good but non-ordinary reduction. In an appendix, jointly with Centeleghe we prove some basic results on $p$-adic Galois representations attached to $\text{GL}_{2}$-type cuspidal automorphic forms over global fields of characteristic $p$.
In this paper, we study the structure of the local components of the (shallow, i.e. without $U_{p}$) Hecke algebras acting on the space of modular forms modulo $p$ of level $1$, and relate them to pseudo-deformation rings. In many cases, we prove that those local components are regular complete local algebras of dimension $2$, generalizing a recent result of Nicolas and Serre for the case $p=2$.
Let $p\geqslant 5$ be a prime. If an irreducible component of the spectrum of the ‘big’ ordinary Hecke algebra does not have complex multiplication, under mild assumptions, we prove that the image of its Galois representation contains, up to finite error, a principal congruence subgroup ${\rm\Gamma}(L)$ of $\text{SL}_{2}(\mathbb{Z}_{p}[[T]])$ for a principal ideal $(L)\neq 0$ of $\mathbb{Z}_{p}[[T]]$ for the canonical ‘weight’ variable $t=1+T$. If $L\notin {\rm\Lambda}^{\times }$, the power series $L$ is proven to be a factor of the Kubota–Leopoldt $p$-adic $L$-function or of the square of the anticyclotomic Katz $p$-adic $L$-function or a power of $(t^{p^{m}}-1)$.
We use an invariant-theoretic method to compute certain twists of the modular curves $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}X(n)$ for $n=7,11$. Searching for rational points on these twists enables us to find non-trivial pairs of $n$-congruent elliptic curves over ${\mathbb{Q}}$, that is, pairs of non-isogenous elliptic curves over ${\mathbb{Q}}$ whose $n$-torsion subgroups are isomorphic as Galois modules. We also find a non-trivial pair of 11-congruent elliptic curves over ${\mathbb{Q}}(T)$, and hence give an explicit infinite family of non-trivial pairs of 11-congruent elliptic curves over ${\mathbb{Q}}$.
We prove modularity of some two-dimensional, $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}2$-adic Galois representations over a totally real field that are nearly ordinary at all places above $2$ and that are residually dihedral. We do this by employing the strategy of Skinner and Wiles, using Hida families, together with the $2$-adic patching method of Khare and Wintenberger. As an application we deduce modularity of some elliptic curves over totally real fields that have good ordinary or multiplicative reduction at places above $2$.
As the simplest case of Langlands functoriality, one expects the existence of the symmetric power $S^n(\pi )$, where $\pi $ is an automorphic representation of ${\rm GL}(2,{\mathbb{A}})$ and ${\mathbb{A}}$ denotes the adeles of a number field $F$. This should be an automorphic representation of ${\rm GL}(N,{\mathbb{A}})$ ($N=n+1)$. This is known for $n=2,3$ and $4$. In this paper we show how to deduce the general case from a recent result of J.T. on deformation theory for ‘Schur representations’, combined with expected results on level-raising, as well as another case (a particular tensor product) of Langlands functoriality. Our methods assume $F$ totally real, and the initial representation $\pi $ of classical type.
Let $p\gt 2$ be prime, and let $F$ be a totally real field in which $p$ is unramified. We give a sufficient criterion for a $\mathrm{mod} \hspace{0.167em} p$ Galois representation to arise from a $\mathrm{mod} \hspace{0.167em} p$ Hilbert modular form of parallel weight one, by proving a ‘companion forms’ theorem in this case. The techniques used are a mixture of modularity lifting theorems and geometric methods. As an application, we show that Serre’s conjecture for $F$ implies Artin’s conjecture for totally odd two-dimensional representations over $F$.
We prove that if W and W′ are non-zero B-pairs whose tensor product is crystalline (or semi-stable or de Rham or Hodge–Tate), then there exists a character μ such that W(μ−1) and W′(μ) are crystalline (or semi-stable or de Rham or Hodge–Tate). We also prove that if W is a B-pair and if F is a Schur functor (for example Sym n or Λn) such that F(W) is crystalline (or semi-stable or de Rham or Hodge–Tate) and if the rank of W is sufficiently large, then there is a character μ such that W(μ−1) is crystalline (or semi-stable or de Rham or Hodge–Tate). In particular, these results apply to p-adic representations.
We prove modularity lifting theorems for ℓ-adic Galois representations of any dimension satisfying a unitary type condition and a Fontaine–Laffaille condition at ℓ. This extends the results of Clozel, Harris and Taylor, and the subsequent work by Taylor. The proof uses the Taylor–Wiles method, as improved by Diamond, Fujiwara, Kisin and Taylor, applied to Hecke algebras of unitary groups, and results of Labesse on stable base change and descent from unitary groups to GLn.
Colmez has given a recipe to associate a smooth modular representation Ω(W) of the Borel subgroup of GL2(Qp) to a -representation W of by using Fontaine’s theory of (φ,Γ)-modules. We compute Ω(W) explicitly and we prove that if W is irreducible and dim (W)=2, then Ω(W) is the restriction to the Borel subgroup of GL2(Qp) of the supersingular representation associated to W by Breuil’s correspondence.
For the p-adic Galois representation associated to a Hilbert modular form, Carayol has shown that, under a certain assumption, its restriction to the local Galois group at a finite place not dividing p is compatible with the local Langlands correspondence. Under the same assumption, we show that the same is true for the places dividing p, in the sense of p-adic Hodge theory, as is shown for an elliptic modular form. We also prove that the monodromy-weight conjecture holds for such representations.