We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given any toric subvariety Y of a smooth toric variety X of codimension k, we construct a length k resolution of ${\mathcal O}_Y$ by line bundles on X. Furthermore, these line bundles can all be chosen to be direct summands of the pushforward of ${\mathcal O}_X$ under the map of toric Frobenius. The resolutions are built from a stratification of a real torus that was introduced by Bondal and plays a role in homological mirror symmetry.
As a corollary, we obtain a virtual analogue of Hilbert’s syzygy theorem for smooth projective toric varieties conjectured by Berkesch, Erman and Smith. Additionally, we prove that the Rouquier dimension of the bounded derived category of coherent sheaves on a toric variety is equal to the dimension of the variety, settling a conjecture of Orlov for these examples. We also prove Bondal’s claim that the pushforward of the structure sheaf under toric Frobenius generates the derived category of a smooth toric variety and formulate a refinement of Uehara’s conjecture that this remains true for arbitrary line bundles.
Mirror symmetry for a semistable degeneration of a Calabi–Yau manifold was first investigated by Doran–Harder–Thompson when the degenerate fiber is a union of two quasi-Fano manifolds. They proposed a topological construction of a mirror Calabi–Yau by gluing of two Landau–Ginzburg models that are mirror to those Fano manifolds. We extend this construction to a general type semistable degeneration where the dual boundary complex of the degenerate fiber is the standard N-simplex. Since each component in the degenerate fiber comes with the simple normal crossing anticanonical divisor, one needs the notion of a hybrid Landau–Ginzburg model – a multipotential analogue of classical Landau–Ginzburg models. We show that these hybrid Landau–Ginzburg models can be glued to be a topological mirror candidate for the nearby Calabi–Yau, which also exhibits the structure of a Calabi–Yau fibration over $\mathbb P^N$. Furthermore, it is predicted that the perverse Leray filtration associated to this fibration is mirror to the monodromy weight filtration on the degeneration side [12]. We explain how this can be deduced from the original mirror P=W conjecture [18].
We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.
Let $f_0$ and $f_1$ be two homogeneous polynomials of degree d in three complex variables $z_1,z_2,z_3$. We show that the Lê–Yomdin surface singularities defined by $g_0:=f_0+z_i^{d+m}$ and $g_1:=f_1+z_i^{d+m}$ have the same abstract topology, the same monodromy zeta-function, the same $\mu ^*$-invariant, but lie in distinct path-connected components of the $\mu ^*$-constant stratum if their projective tangent cones (defined by $f_0$ and $f_1$, respectively) make a Zariski pair of curves in $\mathbb {P}^2$, the singularities of which are Newton non-degenerate. In this case, we say that $V(g_0):=g_0^{-1}(0)$ and $V(g_1):=g_1^{-1}(0)$ make a $\mu ^*$-Zariski pair of surface singularities. Being such a pair is a necessary condition for the germs $V(g_0)$ and $V(g_1)$ to have distinct embedded topologies.
We use the geometry of the stellahedral toric variety to study matroids. We identify the valuative group of matroids with the cohomology ring of the stellahedral toric variety and show that valuative, homological and numerical equivalence relations for matroids coincide. We establish a new log-concavity result for the Tutte polynomial of a matroid, answering a question of Wagner and Shapiro–Smirnov–Vaintrob on Postnikov–Shapiro algebras, and calculate the Chern–Schwartz–MacPherson classes of matroid Schubert cells. The central construction is the ‘augmented tautological classes of matroids’, modeled after certain toric vector bundles on the stellahedral toric variety.
We use the tropical geometry approach to compute absolute and relative enumerative invariants of complex surfaces which are $\mathbb {C} P^1$-bundles over an elliptic curve. We also show that the tropical multiplicity used to count curves can be refined by the standard Block–Göttsche refined multiplicity to give tropical refined invariants. We then give a concrete algorithm using floor diagrams to compute these invariants along with the associated interpretation as operators acting on some Fock space. The floor diagram algorithm allows one to prove the piecewise polynomiality of the relative invariants, and the quasi-modularity of their generating series.
We show that a sufficiently general hypersurface of degree d in $\mathbb {P}^n$ admits a toric Gröbner degeneration after linear change of coordinates if and only if $d\leq 2n-1$.
This papers classifies toric Fano threefolds with singular locus $\{ \frac {1}{k}(1,1,1) \}$ for $k \in \mathbb {Z}_{\geq 1}$ building on the work of Batyrev (1981, Nauk SSSR Ser. Mat. 45, 704–717) and Watanabe–Watanabe (1982, Tokyo J. Math. 5, 37–48). This is achieved by completing an equivalent problem in the language of Fano polytopes. Furthermore, we identify birational relationships between entries of the classification. For a fixed value $k \geq 4$, there are exactly two such toric Fano threefolds linked by a blowup in a torus-invariant line.
We introduce a conjecture on Virasoro constraints for the moduli space of stable sheaves on a smooth projective surface. These generalise the Virasoro constraints on the Hilbert scheme of a surface found by Moreira and Moreira, Oblomkov, Okounkov and Pandharipande. We verify the conjecture in many nontrivial cases by using a combinatorial description of equivariant sheaves found by Klyachko.
We give an upper bound on the volume
$\operatorname {vol}(P^*)$
of a polytope
$P^*$
dual to a d-dimensional lattice polytope P with exactly one interior lattice point in each dimension d. This bound, expressed in terms of the Sylvester sequence, is sharp and achieved by the dual to a particular reflexive simplex. Our result implies a sharp upper bound on the volume of a d-dimensional reflexive polytope. Translated into toric geometry, this gives a sharp upper bound on the anti-canonical degree
$(-K_X)^d$
of a d-dimensional Fano toric variety X with at worst canonical singularities.
It is well known that the diffeomorphism type of the Milnor fibration of a (Newton) nondegenerate polynomial function f is uniquely determined by the Newton boundary of f. In the present paper, we generalize this result to certain degenerate functions, namely we show that the diffeomorphism type of the Milnor fibration of a (possibly degenerate) polynomial function of the form
$f=f^1\cdots f^{k_0}$
is uniquely determined by the Newton boundaries of
$f^1,\ldots , f^{k_0}$
if
$\{f^{k_1}=\cdots =f^{k_m}=0\}$
is a nondegenerate complete intersection variety for any
$k_1,\ldots ,k_m\in \{1,\ldots , k_0\}$
.
We study open-closed orbifold Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric Deligne-Mumford stacks (with possibly nontrivial generic stabilisers K and semi-projective coarse moduli spaces) relative to Lagrangian branes of Aganagic-Vafa type. An Aganagic-Vafa brane in this paper is a possibly ineffective
$C^\infty $
orbifold that admits a presentation
$[(S^1\times \mathbb {R} ^2)/G_\tau ]$
, where
$G_\tau $
is a finite abelian group containing K and
$G_\tau /K \cong \boldsymbol {\mu }_{\mathfrak {m}}$
is cyclic of some order
$\mathfrak {m}\in \mathbb {Z} _{>0}$
.
1. We present foundational materials of enumerative geometry of stable holomorphic maps from bordered orbifold Riemann surfaces to a 3-dimensional Calabi-Yau smooth toric DM stack
$\mathcal {X}$
with boundaries mapped into an Aganagic-Vafa brane
$\mathcal {L}$
. All genus open-closed Gromov-Witten invariants of
$\mathcal {X}$
relative to
$\mathcal {L}$
are defined by torus localisation and depend on the choice of a framing
$f\in \mathbb {Z} $
of
$\mathcal {L}$
.
2. We provide another definition of all genus open-closed Gromov-Witten invariants in (1) based on algebraic relative orbifold Gromov-Witten theory, which agrees with the definition in (1) up to a sign depending on the choice of orientation on moduli of maps in (1). This generalises the definition in [57] for smooth toric Calabi-Yau 3-folds and specifies an orientation on moduli of maps in (1) compatible with the canonical orientation on moduli of relative stable maps determined by the complex structure.
3. When
$\mathcal {X}$
is a toric Calabi-Yau 3-orbifold (i.e., when the generic stabiliser K is trivial), so that
$G_\tau =\boldsymbol {\mu }_{\mathfrak {m}}$
, we define generating functions
$F_{g,h}^{\mathcal {X},(\mathcal {L},f)}$
of open-closed Gromov-Witten invariants of arbitrary genus g and number h of boundary circles; it takes values in
$H^*_{ {\mathrm {CR}} }(\mathcal {B} \boldsymbol {\mu }_{\mathfrak {m}}; \mathbb {C} )^{\otimes h}$
, where
$H^*_{ {\mathrm {CR}} }(\mathcal {B} \boldsymbol {\mu }_{\mathfrak {m}}; \mathbb {C} )\cong \mathbb {C} ^{\mathfrak {m}}$
is the Chen-Ruan orbifold cohomology of the classifying space
$\mathcal {B} \boldsymbol {\mu }_{\mathfrak {m}}$
of
$\boldsymbol {\mu }_{\mathfrak {m}}$
.
4. We prove an open mirror theorem that relates the generating function
$F_{0,1}^{\mathcal {X},(\mathcal {L},f)}$
of orbifold disk invariants to Abel-Jacobi maps of the mirror curve of
$\mathcal {X}$
. This generalises a conjecture by Aganagic-Vafa [6] and Aganagic-Klemm-Vafa [5] (proved in full generality by the first and the second authors in [33]) on the disk potential of a smooth semi-projective toric Calabi-Yau 3-fold.
We propose a conjectural framework for computing Gorenstein measures and stringy Hodge numbers in terms of motivic integration over arcs of smooth Artin stacks, and we verify this framework in the case of fantastacks, which are certain toric Artin stacks that provide (nonseparated) resolutions of singularities for toric varieties. Specifically, let
$\mathcal {X}$
be a smooth Artin stack admitting a good moduli space
$\pi : \mathcal {X} \to X$
, and assume that X is a variety with log-terminal singularities,
$\pi $
induces an isomorphism over a nonempty open subset of X and the exceptional locus of
$\pi $
has codimension at least
$2$
. We conjecture a change-of-variables formula relating the motivic measure for
$\mathcal {X}$
to the Gorenstein measure for X and functions measuring the degree to which
$\pi $
is nonseparated. We also conjecture that if the stabilisers of
$\mathcal {X}$
are special groups in the sense of Serre, then almost all arcs of X lift to arcs of
$\mathcal {X}$
, and we explain how in this case (assuming a finiteness hypothesis satisfied by fantastacks) our conjectures imply a formula for the stringy Hodge numbers of X in terms of a certain motivic integral over the arcs of
$\mathcal {X}$
. We prove these conjectures in the case where
$\mathcal {X}$
is a fantastack.
We explicate the combinatorial/geometric ingredients of Arthur’s proof of the convergence and polynomiality, in a truncation parameter, of his noninvariant trace formula. Starting with a fan in a real, finite dimensional, vector space and a collection of functions, one for each cone in the fan, we introduce a combinatorial truncated function with respect to a polytope normal to the fan and prove the analogues of Arthur’s results on the convergence and polynomiality of the integral of this truncated function over the vector space. The convergence statements clarify the important role of certain combinatorial subsets that appear in Arthur’s work and provide a crucial partition that amounts to a so-called nearest face partition. The polynomiality statements can be thought of as far reaching extensions of the Ehrhart polynomial. Our proof of polynomiality relies on the Lawrence–Varchenko conical decomposition and readily implies an extension of the well-known combinatorial lemma of Langlands. The Khovanskii–Pukhlikov virtual polytopes are an important ingredient here. Finally, we give some geometric interpretations of our combinatorial truncation on toric varieties as a measure and a Lefschetz number.
We give a characterisation of Fano-type surfaces with large cyclic automorphisms. As an application, we give a characterisation of Kawamata log terminal
$3$
-fold singularities with large class groups of rank at least
$2$
.
We compute the cohomology rings of smooth real toric varieties and of real toric spaces, which are quotients of real moment-angle complexes by freely acting subgroups of the ambient 2-torus. The differential graded algebra (dga) we present is in fact an equivariant dga model, valid for arbitrary coefficients. We deduce from our description that smooth toric varieties are $\hbox{M}$-varieties.
We explain how to form a novel dataset of Calabi–Yau threefolds via the Gross–Siebert algorithm. We expect these to degenerate to Calabi–Yau toric hypersurfaces with certain Gorenstein (not necessarily isolated) singularities. In particular, we explain how to ‘smooth the boundary’ of a class of four-dimensional reflexive polytopes to obtain polarised tropical manifolds. We compute topological invariants of a compactified torus fibration over each such tropical manifold, expected to be homeomorphic to the general fibre of the Gross–Siebert smoothing. We consider a family of examples related to products of reflexive polygons. Among these we find $14$ topological types with $b_2=1$ that do not appear in existing lists of known rank-one Calabi–Yau threefolds.
In 2006, Kenyon and Okounkov Kenyon and Okounkov [12] computed the moduli space of Harnack curves of degree d in ${\mathbb {C}\mathbb {P}}^2$. We generalise their construction to any projective toric surface and show that the moduli space ${\mathcal {H}_\Delta }$ of Harnack curves with Newton polygon $\Delta $ is diffeomorphic to ${\mathbb {R}}^{m-3}\times {\mathbb {R}}_{\geq 0}^{n+g-m}$, where $\Delta $ has m edges, g interior lattice points and n boundary lattice points. This solves a conjecture of Crétois and Lang. The main result uses abstract tropical curves to construct a compactification of this moduli space where additional points correspond to collections of curves that can be patchworked together to produce a curve in ${\mathcal {H}_\Delta }$. This compactification has a natural stratification with the same poset as the secondary polytope of $\Delta $.
We calculate the integral equivariant cohomology, in terms of generators and relations, of locally standard torus orbifolds whose odd degree ordinary cohomology vanishes. We begin by studying GKM-orbifolds, which are more general, before specializing to half-dimensional torus actions.
We construct a family of compactifications of the affine cone of the Grassmannian variety of
$2$
-planes. We show that both the tropical variety of the Plücker ideal and familiar valuations associated to the construction of Newton–Okounkov bodies for the Grassmannian variety can be recovered from these compactifications. In this way, we unite various perspectives for constructing toric degenerations of flag varieties.