We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we provide a new approach to prove some weighted-blowup formulae for genus zero orbifold Gromov–Witten invariants. As a consequence, we show the invariance of symplectically rational connectedness with respect to weighted-blowup along positive centers. Furthermore, we use this method to give a new proof to the genus zero relative-orbifold correspondence of Gromov–Witten invariants.
The space of Fredholm operators of fixed index is stratified by submanifolds according to the dimension of the kernel. Geometric considerations often lead to questions about the intersections of concrete families of elliptic operators with these submanifolds: Are the intersections nonempty? Are they smooth? What are their codimensions? The purpose of this article is to develop tools to address these questions in equivariant situations. An important motivation for this work are transversality questions for multiple covers of J-holomorphic maps. As an application, we use our framework to give a concise exposition of Wendl’s proof of the superrigidity conjecture.
We study open-closed orbifold Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric Deligne-Mumford stacks (with possibly nontrivial generic stabilisers K and semi-projective coarse moduli spaces) relative to Lagrangian branes of Aganagic-Vafa type. An Aganagic-Vafa brane in this paper is a possibly ineffective
$C^\infty $
orbifold that admits a presentation
$[(S^1\times \mathbb {R} ^2)/G_\tau ]$
, where
$G_\tau $
is a finite abelian group containing K and
$G_\tau /K \cong \boldsymbol {\mu }_{\mathfrak {m}}$
is cyclic of some order
$\mathfrak {m}\in \mathbb {Z} _{>0}$
.
1. We present foundational materials of enumerative geometry of stable holomorphic maps from bordered orbifold Riemann surfaces to a 3-dimensional Calabi-Yau smooth toric DM stack
$\mathcal {X}$
with boundaries mapped into an Aganagic-Vafa brane
$\mathcal {L}$
. All genus open-closed Gromov-Witten invariants of
$\mathcal {X}$
relative to
$\mathcal {L}$
are defined by torus localisation and depend on the choice of a framing
$f\in \mathbb {Z} $
of
$\mathcal {L}$
.
2. We provide another definition of all genus open-closed Gromov-Witten invariants in (1) based on algebraic relative orbifold Gromov-Witten theory, which agrees with the definition in (1) up to a sign depending on the choice of orientation on moduli of maps in (1). This generalises the definition in [57] for smooth toric Calabi-Yau 3-folds and specifies an orientation on moduli of maps in (1) compatible with the canonical orientation on moduli of relative stable maps determined by the complex structure.
3. When
$\mathcal {X}$
is a toric Calabi-Yau 3-orbifold (i.e., when the generic stabiliser K is trivial), so that
$G_\tau =\boldsymbol {\mu }_{\mathfrak {m}}$
, we define generating functions
$F_{g,h}^{\mathcal {X},(\mathcal {L},f)}$
of open-closed Gromov-Witten invariants of arbitrary genus g and number h of boundary circles; it takes values in
$H^*_{ {\mathrm {CR}} }(\mathcal {B} \boldsymbol {\mu }_{\mathfrak {m}}; \mathbb {C} )^{\otimes h}$
, where
$H^*_{ {\mathrm {CR}} }(\mathcal {B} \boldsymbol {\mu }_{\mathfrak {m}}; \mathbb {C} )\cong \mathbb {C} ^{\mathfrak {m}}$
is the Chen-Ruan orbifold cohomology of the classifying space
$\mathcal {B} \boldsymbol {\mu }_{\mathfrak {m}}$
of
$\boldsymbol {\mu }_{\mathfrak {m}}$
.
4. We prove an open mirror theorem that relates the generating function
$F_{0,1}^{\mathcal {X},(\mathcal {L},f)}$
of orbifold disk invariants to Abel-Jacobi maps of the mirror curve of
$\mathcal {X}$
. This generalises a conjecture by Aganagic-Vafa [6] and Aganagic-Klemm-Vafa [5] (proved in full generality by the first and the second authors in [33]) on the disk potential of a smooth semi-projective toric Calabi-Yau 3-fold.
We relate the quantum cohomology of minuscule flag manifolds to the tt*-Toda equations, a special case of the topological–antitopological fusion equations which were introduced by Cecotti and Vafa in their study of supersymmetric quantum field theories. To do this, we combine the Lie-theoretic treatment of the tt*-Toda equations of Guest–Ho with the Lie-theoretic description of the quantum cohomology of minuscule flag manifolds from Chaput–Manivel–Perrin and Golyshev–Manivel.
In [4], Brown proved that the I-function of a toric fibration lies on the overruled Lagrangian cone of its $g=0$ Gromov–Witten theory, introduced by Coates and Givental [8]. In this paper, we prove the theorem for partial flag-variety fibrations. To do so, we construct new moduli spaces generalising the idea of Ciocan-Fontanine, Kim and Maulik [7].
We prove the genus-one restriction of the all-genus Landau–Ginzburg/Calabi–Yau conjecture of Chiodo and Ruan, stated in terms of the geometric quantization of an explicit symplectomorphism determined by genus-zero invariants. This gives the first evidence supporting the higher-genus Landau–Ginzburg/Calabi–Yau correspondence for the quintic $3$-fold, and exhibits the first instance of the ‘genus zero controls higher genus’ principle, in the sense of Givental’s quantization formalism, for non-semisimple cohomological field theories.
We study a class of flat bundles, of finite rank $N$, which arise naturally from the Donaldson–Thomas theory of a Calabi–Yau threefold $X$ via the notion of a variation of BPS structure. We prove that in a large $N$ limit their flat sections converge to the solutions to certain infinite-dimensional Riemann–Hilbert problems recently found by Bridgeland. In particular this implies an expression for the positive degree, genus 0 Gopakumar–Vafa contribution to the Gromov–Witten partition function of $X$ in terms of solutions to confluent hypergeometric differential equations.
This paper proves the existence of potentials of the first and second kind of a Frobenius like structure in a frame, which encompasses families of arrangements. The frame uses the notion of matroids. For the proof of the existence of the potentials, a power series ansatz is made. The proof that it works requires that certain decompositions of tuples of coordinate vector fields are related by certain elementary transformations. This is shown with a nontrivial result on matroid partition.
Suppose that a complex manifold M is locally embedded into a higher-dimensional neighbourhood as a submanifold. We show that, if the local neighbourhood germs are compatible in a suitable sense, then they glue together to give a global neighbourhood of M. As an application, we prove a global version of Hertling–Manin's unfolding theorem for germs of TEP structures; this has applications in the study of quantum cohomology.
The Kodaira–Thurston manifold is a quotient of a nilpotent Lie group by a cocompact lattice. We compute the family Gromov–Witten invariants which count pseudoholomorphic tori in the Kodaira–Thurston manifold. For a fixed symplectic form the Gromov–Witten invariant is trivial so we consider the twistor family of left-invariant symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This family defines a loop in the space of symplectic forms. This is the first example of a genus one family Gromov–Witten computation for a non-Kähler manifold.
We present a reconstruction theorem for Fano vector bundles on projective space which recovers the small quantum cohomology for the projectivization of the bundle from a small number of low-degree Gromov-Witten invariants. We provide an extended example in which we calculate the quantum cohomology of a certain Fano 9-fold and deduce from this, using the quantum Lefschetz theorem, the quantum period sequence for a Fano 3-fold of Picard rank 2 and degree 24. This example is new, and is important for the Fanosearch program.
We prove a formula computing the Gromov-Witten invariants of genus zero with three marked points of the resolution of the transversal A3-singularity of the weighted projective space ℙ(1,3,4,4) using the theory of deformations of surfaces with An-singularities. We use this result to check Ruan’s conjecture for the stack ℙ(1,3,4,4).
We show that there is an hierarchy of intersection rigidity properties of sets in a closed symplectic manifold: some sets cannot be displaced by symplectomorphisms from more sets than the others. We also find new examples of rigidity of intersections involving, in particular, specific fibers of moment maps of Hamiltonian torus actions, monotone Lagrangian submanifolds (following the works of P. Albers and P. Biran-O. Cornea) as well as certain, possibly singular, sets defined in terms of Poisson-commutative subalgebras of smooth functions. In addition, we get some geometric obstructions to semi-simplicity of the quantum homology of symplectic manifolds. The proofs are based on the Floer-theoretical machinery of partial symplectic quasi-states.
On a compact Kähler manifold $X$ with a holomorphic 2-form $\alpha$, there is an almost complex structure associated with α. We show how this implies vanishing theorems for the Gromov–Witten invariants of $X$. This extends the approach used by Parker and the author for Kähler surfaces to higher dimensions.
We introduce the notion of an alternate product of Frobenius manifolds and we give, after Ciocan-Fontanine et al., an interpretation of the Frobenius manifold structure canonically attached to the quantum cohomology of G(r,n+1) in terms of alternate products. We also investigate the relationship with the alternate Thom–Sebastiani product of Laurent polynomials.
In this paper we study the Chen–Ruan cohomology ring of weighted projective spaces. Given a weighted projective space ${{\mathbf{P}}^{n}}_{{{q}_{0}},\ldots ,{{q}_{n}}}$, we determine all of its twisted sectors and the corresponding degree shifting numbers. The main result of this paper is that the obstruction bundle over any 3-multisector is a direct sum of line bundles which we use to compute the orbifold cup product. Finally we compute the Chen–Ruan cohomology ring of weighted projective space $\mathbf{P}_{1,\,2,\,2,\,3,3,\,{{3}^{\centerdot }}}^{5}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.