We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present and study a novel algorithm for the computation of 2-Wasserstein population barycenters of absolutely continuous probability measures on Euclidean space. The proposed method can be seen as a stochastic gradient descent procedure in the 2-Wasserstein space, as well as a manifestation of a law of large numbers therein. The algorithm aims to find a Karcher mean or critical point in this setting, and can be implemented ‘online’, sequentially using independent and identically distributed random measures sampled from the population law. We provide natural sufficient conditions for this algorithm to almost surely converge in the Wasserstein space towards the population barycenter, and we introduce a novel, general condition which ensures uniqueness of Karcher means and, moreover, allows us to obtain explicit, parametric convergence rates for the expected optimality gap. We also study the mini-batch version of this algorithm, and discuss examples of families of population laws to which our method and results can be applied. This work expands and deepens ideas and results introduced in an early version of Backhoff-Veraguas et al. (2022), in which a statistical application (and numerical implementation) of this method is developed in the context of Bayesian learning.
We obtain the asymptotic behaviour of the longest increasing/non-decreasing subsequences in a random uniform multiset permutation in which each element in $\{1,\dots,n\}$ occurs k times, where k may depend on n. This generalises the famous Ulam–Hammersley problem of the case $k=1$. The proof relies on poissonisation and on a careful non-asymptotic analysis of variants of the Hammersley–Aldous–Diaconis particle system.
We consider an SIR (susceptible $\to$ infective $\to$ recovered) epidemic in a closed population of size n, in which infection spreads via mixing events, comprising individuals chosen uniformly at random from the population, which occur at the points of a Poisson process. This contrasts sharply with most epidemic models, in which infection is spread purely by pairwise interaction. A sequence of epidemic processes, indexed by n, and an approximating branching process are constructed on a common probability space via embedded random walks. We show that under suitable conditions the process of infectives in the epidemic process converges almost surely to the branching process. This leads to a threshold theorem for the epidemic process, where a major outbreak is defined as one that infects at least $\log n$ individuals. We show further that there exists $\delta \gt 0$, depending on the model parameters, such that the probability that a major outbreak has size at least $\delta n$ tends to one as $n \to \infty$.
Extreme value theory plays an important role in providing approximation results for the extremes of a sequence of independent random variables when their distribution is unknown. An important one is given by the generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold t, where s(t) is a suitable norming function. We study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback–Leibler divergence between the respective densities.
This paper investigates properties of the class of graphs based on exchangeable point processes. We provide asymptotic expressions for the number of edges, number of nodes, and degree distributions, identifying four regimes: (i) a dense regime, (ii) a sparse, almost dense regime, (iii) a sparse regime with power-law behaviour, and (iv) an almost extremely sparse regime. We show that, under mild assumptions, both the global and local clustering coefficients converge to constants which may or may not be the same. We also derive a central limit theorem for subgraph counts and for the number of nodes. Finally, we propose a class of models within this framework where one can separately control the latent structure and the global sparsity/power-law properties of the graph.
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variables on the random infinite connected component. We provide sufficient conditions for the existence of the asymptotic shape, and we show that the shape is a Euclidean ball. We give some examples exhibiting the result for Bernoulli percolation and the Richardson model. In the latter case we further show that it converges weakly to a nonstandard branching process in the joint limit of large intensities and slow passage times.
In the classical framework, a random walk on a group is a Markov chain with independent and identically distributed increments. In some sense, random walks are time and space homogeneous. This paper is devoted to a class of inhomogeneous random walks on
$\mathbb{Z}^d$
termed ‘Markov additive processes’ (also known as Markov random walks, random walks with internal degrees of freedom, or semi-Markov processes). In this model, the increments of the walk are still independent but their distributions are dictated by a Markov chain, termed the internal Markov chain. While this model is largely studied in the literature, most of the results involve internal Markov chains whose operator is quasi-compact. This paper extends two results for more general internal operators: a local limit theorem and a sufficient criterion for their transience. These results are thereafter applied to a new family of models of drifted random walks on the lattice
$\mathbb{Z}^d$
.
We introduce a notion of barycenter of a probability measure related to the symmetric mean of a collection of non-negative real numbers. Our definition is inspired by the work of Halász and Székely, who in 1976 proved a law of large numbers for symmetric means. We study the analytic properties of this Halász–Székely barycenter. We establish fundamental inequalities that relate the symmetric mean of a list of non-negative real numbers with the barycenter of the measure uniformly supported on these points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of a sequence of dynamical observations converge to the Halász–Székely barycenter of the corresponding distribution.
The rich-get-richer rule reinforces actions that have been frequently chosen in the past. What happens to the evolution of individuals’ inclinations to choose an action when agents interact? Interaction tends to homogenize, while each individual dynamics tends to reinforce its own position. Interacting stochastic systems of reinforced processes have recently been considered in many papers, in which the asymptotic behavior is proven to exhibit almost sure synchronization. In this paper we consider models where, even if interaction among agents is present, absence of synchronization may happen because of the choice of an individual nonlinear reinforcement. We show how these systems can naturally be considered as models for coordination games or technological or opinion dynamics.
Empirical studies (e.g. Jiang et al. (2015) and Mislove et al. (2007)) show that online social networks have not only in- and out-degree distributions with Pareto-like tails, but also a high proportion of reciprocal edges. A classical directed preferential attachment (PA) model generates in- and out-degree distributions with power-law tails, but the theoretical properties of the reciprocity feature in this model have not yet been studied. We derive asymptotic results on the number of reciprocal edges between two fixed nodes, as well as the proportion of reciprocal edges in the entire PA network. We see that with certain choices of parameters, the proportion of reciprocal edges in a directed PA network is close to 0, which differs from the empirical observation. This points out one potential problem of fitting a classical PA model to a given network dataset with high reciprocity, and indicates that alternative models need to be considered.
A continuous-state branching process with immigration having branching mechanism
$\Psi$
and immigration mechanism
$\Phi$
, a CBI
$(\Psi,\Phi)$
process for short, may have either of two different asymptotic regimes, depending on whether
$\int_{0}\frac{\Phi(u)}{|\Psi(u)|}\textrm{d} u<\infty$
or
$\int_{0}\frac{\Phi(u)}{|\Psi(u)|}\textrm{d} u=\infty$
. When
$\int_{0}\frac{\Phi(u)}{|\Psi(u)|}\textrm{d} u<\infty$
, the CBI process has either a limit distribution or a growth rate dictated by the branching dynamics. When
$\scriptstyle\int_{0}\tfrac{\Phi(u)}{|\Psi(u)|}\textrm{d} u=\infty$
, immigration overwhelms branching dynamics. Asymptotics in the latter case are studied via a nonlinear time-dependent renormalization in law. Three regimes of weak convergence are exhibited. Processes with critical branching mechanisms subject to a regular variation assumption are studied. This article proves and extends results stated by M. Pinsky in ‘Limit theorems for continuous state branching processes with immigration’ (Bull. Amer. Math. Soc.78, 1972).
This is the second of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this second paper, we restrict our attention to non-spectrally degenerate random walks and we prove precise asymptotics of the probability $p_n(e,e)$ of going back to the origin at time $n$. We combine techniques adapted from thermodynamic formalism with the rough estimates of the Green function given by part I to show that $p_n(e,e)\sim CR^{-n}n^{-3/2}$, where $R$ is the inverse of the spectral radius of the random walk. This both generalizes results of Woess for free products and results of Gouëzel for hyperbolic groups.
Latouche and Nguyen (2015b) constructed a sequence of stochastic fluid processes and showed that it converges weakly to a Markov-modulated Brownian motion (MMBM). Here, we construct a different sequence of stochastic fluid processes and show that it converges strongly to an MMBM. To the best of our knowledge, this is the first result on strong convergence to a Markov-modulated Brownian motion. Besides implying weak convergence, such a strong approximation constitutes a powerful tool for developing deep results for sophisticated models. Additionally, we prove that the rate of this almost sure convergence is
$o(n^{-1/2} \log n)$
. When reduced to the special case of standard Brownian motion, our convergence rate is an improvement over that obtained by a different approximation in Gorostiza and Griego (1980), which is
$o(n^{-1/2}(\log n)^{5/2})$
.
Under a fourth-order moment condition on the branching and a second-order moment condition on the immigration mechanisms, we show that an appropriately scaled projection of a supercritical and irreducible continuous-state and continuous-time branching process with immigration on certain left non-Perron eigenvectors of the branching mean matrix is asymptotically mixed normal. With an appropriate random scaling, under some conditional probability measure, we prove asymptotic normality as well. In the case of a non-trivial process, under a first-order moment condition on the immigration mechanism, we also prove the convergence of the relative frequencies of distinct types of individuals on a suitable event; for instance, if the immigration mechanism does not vanish, then this convergence holds almost surely.
In the classical simple random walk the steps are independent, that is, the walker has no memory. In contrast, in the elephant random walk, which was introduced by Schütz and Trimper [19] in 2004, the next step always depends on the whole path so far. Our main aim is to prove analogous results when the elephant has only a restricted memory, for example remembering only the most remote step(s), the most recent step(s), or both. We also extend the models to cover more general step sizes.
We consider stochastic differential equations of the form $dX_t = |f(X_t)|/t^{\gamma} dt+1/t^{\gamma} dB_t$, where f(x) behaves comparably to $|x|^k$ in a neighborhood of the origin, for $k\in [1,\infty)$. We show that there exists a threshold value $ \,{:}\,{\raise-1.5pt{=}}\, \tilde{\gamma}$ for $\gamma$, depending on k, such that if $\gamma \in (1/2, \tilde{\gamma})$, then $\mathbb{P}(X_t\rightarrow 0) = 0$, and for the rest of the permissible values of $\gamma$, $\mathbb{P}(X_t\rightarrow 0)>0$. These results extend to discrete processes that satisfy $X_{n+1}-X_n = f(X_n)/n^\gamma +Y_n/n^\gamma$. Here, $Y_{n+1}$ are martingale differences that are almost surely bounded.
This result shows that for a function F whose second derivative at degenerate saddle points is of polynomial order, it is always possible to escape saddle points via the iteration $X_{n+1}-X_n =F'(X_n)/n^\gamma +Y_n/n^\gamma$ for a suitable choice of $\gamma$.
This is the first of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green function. Along the way, we introduce the notion of relative automaticity which will be useful in both papers and we show that relatively hyperbolic groups are relatively automatic. We also define the notion of spectral positive recurrence for random walks on relatively hyperbolic groups. We then use our estimates for the Green function to prove that
$p_n\asymp R^{-n}n^{-3/2}$
for spectrally positive-recurrent random walks, where
$p_n$
is the probability of going back to the origin at time n and where R is the inverse of the spectral radius of the random walk.
Motivated by mathematical tissue growth modelling, we consider the problem of approximating the dynamics of multicolor Pólya urn processes that start with large numbers of balls of different colors and run for a long time. Using strong approximation theorems for empirical and quantile processes, we establish Gaussian process approximations for the Pólya urn processes. The approximating processes are sums of a multivariate Brownian motion process and an independent linear drift with a random Gaussian coefficient. The dominating term between the two depends on the ratio of the number of time steps n to the initial number of balls N in the urn. We also establish an upper bound of the form $c(n^{-1/2}+N^{-1/2})$ for the maximum deviation over the class of convex Borel sets of the step-n urn composition distribution from the approximating normal law.
We study the long-term behaviour of a random walker embedded in a growing sequence of graphs. We define a (generally non-Markovian) real-valued stochastic process, called the knowledge process, that represents the ratio between the number of vertices already visited by the walker and the current size of the graph. We mainly focus on the case where the underlying graph sequence is the growing sequence of complete graphs.
We establish a fundamental property of bivariate Pareto records for independent observations uniformly distributed in the unit square. We prove that the asymptotic conditional distribution of the number of records broken by an observation given that the observation sets a record is Geometric with parameter 1/2.