We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is a survey of the theory of adaptive finite element methods (AFEMs), which are fundamental to modern computational science and engineering but whose mathematical assessment is a formidable challenge. We present a self-contained and up-to-date discussion of AFEMs for linear second-order elliptic PDEs and dimension d > 1, with emphasis on foundational issues. After a brief review of functional analysis and basic finite element theory, including piecewise polynomial approximation in graded meshes, we present the core material for coercive problems. We start with a novel a posteriori error analysis applicable to rough data, which delivers estimators fully equivalent to the solution error. They are used in the design and study of three AFEMs depending on the structure of data. We prove linear convergence of these algorithms and rate-optimality provided the solution and data belong to suitable approximation classes. We also address the relation between approximation and regularity classes. We finally extend this theory to discontinuous Galerkin methods as prototypes of non-conforming AFEMs, and beyond coercive problems to inf-sup stable AFEMs.
The present review paper has several objectives. Its primary aim is to give an idea of the general features of virtual element methods (VEMs), which were introduced about a decade ago in the field of numerical methods for partial differential equations, in order to allow decompositions of the computational domain into polygons or polyhedra of a very general shape.
Nonetheless, the paper is also addressed to readers who have already heard (and possibly read) about VEMs and are interested in gaining more precise information, in particular concerning their application in specific subfields such as
${C}^1$
-approximations of plate bending problems or approximations to problems in solid and fluid mechanics.
We consider a local projection stabilization based on biorthogonal systems for convection–diffusion–reaction differential equations with mixed boundary conditions. The approach based on biorthogonal systems is numerically more efficient than other existing approaches to obtain a uniform approximation for convection dominated problems. We prove optimal a priori error estimates for the proposed numerical technique. Numerical examples are presented to demonstrate the performance of the approach.
Finite element methods developed for unfitted meshes have been widely applied to various interface problems. However, many of them resort to non-conforming spaces for approximation, which is a critical obstacle for the extension to $\textbf{H}(\text{curl})$ equations. This essential issue stems from the underlying Sobolev space $\textbf{H}^s(\text{curl};\,\Omega)$, and even the widely used penalty methodology may not yield the optimal convergence rate. One promising approach to circumvent this issue is to use a conforming test function space, which motivates us to develop a Petrov–Galerkin immersed finite element (PG-IFE) method for $\textbf{H}(\text{curl})$-elliptic interface problems. We establish the Nédélec-type IFE spaces and develop some important properties including their edge degrees of freedom, an exact sequence relating to the $H^1$ IFE space and optimal approximation capabilities. We analyse the inf-sup condition under certain assumptions and show the optimal convergence rate, which is also validated by numerical experiments.
In this paper we show that conforming Galerkin approximations for p-harmonic functions tend to ∞-harmonic functions in the limit p → ∞ and h → 0, where h denotes the Galerkin discretization parameter.
In this paper, a new type of stabilized finite element method is discussed for Oseen equations based on the local L2 projection stabilized technique for the velocity field. Velocity and pressure are approximated by two kinds of mixed finite element spaces, Pl2–P1, (l = 1,2). A main advantage of the proposed method lies in that, all the computations are performed at the same element level, without the need of nested meshes or the projection of the gradient of velocity onto a coarse level. Stability and convergence are proved for two kinds of stabilized schemes. Numerical experiments confirm the theoretical results.
This paper proposes an extrapolation cascadic multigrid (EXCMG) method to solve elliptic problems in domains with reentrant corners. On a class of λ-graded meshes, we derive some new extrapolation formulas to construct a high-order approximation to the finite element solution on the next finer mesh using the numerical solutions on two-level of grids (current and previous grids). Then, this high-order approximation is used as the initial guess to reduce computational cost of the conjugate gradient method. Recursive application of this idea results in the EXCMG method proposed in this paper. Finally, numerical results for a crack problem and an L-shaped problem are presented to verify the efficiency and effectiveness of the proposed EXCMG method.
We analyze the geometrically consistent schemes proposed by E. Lu and Yang [6] for one-dimensional problem with finite range interaction. The existence of the reconstruction coefficients is proved, and optimal error estimate is derived under sharp stability condition. Numerical experiments are performed to confirm the theoretical results.
Consider the scattering of a time-harmonic acoustic incident wave by a bounded, penetrable, and isotropic elastic solid, which is immersed in a homogeneous compressible air or fluid. The paper concerns the numerical solution for such an acoustic-elastic interaction problem in three dimensions. An exact transparent boundary condition (TBC) is developed to reduce the problem equivalently into a boundary value problem in a bounded domain. The perfectly matched layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded computational domain. The well-posedness and exponential convergence of the solution are established for the truncated PML problem by using a PML equivalent TBC. An a posteriori error estimate based adaptive finite element method is developed to solve the scattering problem. Numerical experiments are included to demonstrate the competitive behavior of the proposed method.
A robust residual-based a posteriori error estimator is proposed for a weak Galerkin finite element method for the Stokes problem in two and three dimensions. The estimator consists of two terms, where the first term characterises the difference between the L2-projection of the velocity approximation on the element interfaces and the corresponding numerical trace, and the second is related to the jump of the velocity approximation between the adjacent elements. We show that the estimator is reliable and efficient through two estimates of global upper and global lower bounds, up to two data oscillation terms caused by the source term and the nonhomogeneous Dirichlet boundary condition. The estimator is also robust in the sense that the constant factors in the upper and lower bounds are independent of the viscosity coefficient. Numerical results are provided to verify the theoretical results.
We provide some computable error estimates in solving a nonsymmetric eigenvalue problem by general conforming finite element methods on general meshes. Based on the complementary method, we first give computable error estimates for both the original eigenfunctions and the corresponding adjoint eigenfunctions, and then we introduce a generalised Rayleigh quotient to deduce a computable error estimate for the eigenvalue approximations. Some numerical examples are presented to illustrate our theoretical results.
We propose a non-traditional finite element method with non-body-fitting grids to solve the matrix coefficient elliptic equations with imperfect contact in two dimensions, which has not been well-studied in the literature. Numerical experiments demonstrated the effectiveness of our method.
A coupled mathematical system of four quasi-linear partial differential equations and the initial-boundary value conditions is presented to interpret transient behavior of three dimensional semiconductor device with heat conduction. The electric potential is defined by an elliptic equation, the electron and hole concentrations are determined by convection-dominated diffusion equations and the temperature is interpreted by a heat conduction equation. A mixed finite element approximation is used to get the electric field potential and one order of computational accuracy is improved. Two concentration equations and the heat conduction equation are solved by a fractional step scheme modified by a second-order upwind difference method, which can overcome numerical oscillation, dispersion and computational complexity. This changes the computation of a three dimensional problem into three successive computations of one-dimensional problem where the method of speedup is used and the computational work is greatly shortened. An optimal second-order error estimate in L2 norm is derived by prior estimate theory and other special techniques of partial differential equations. This type of parallel method is important in numerical analysis and is most valuable in numerical application of semiconductor device and it can successfully solve this international famous problem.
This paper is concerned with the invisibility cloaking in acoustic wave scattering from a new perspective. We are especially interested in achieving the invisibility cloaking by completely regular and isotropic mediums. It is shown that an interior transmission eigenvalue problem arises in our study, which is the one considered theoretically in Cakoni et al. (Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Problems and Imaging, 6 (2012), 373–398). Based on such an observation, we propose a cloaking scheme that takes a three-layer structure including a cloaked region, a lossy layer and a cloaking shell. The target medium in the cloaked region can be arbitrary but regular, whereas the mediums in the lossy layer and the cloaking shell are both regular and isotropic. We establish that if a certain non-transparency condition is satisfied, then there exists an infinite set of incident waves such that the cloaking device is nearly invisible under the corresponding wave interrogation. The set of waves is generated from the Herglotz approximation of the associated interior transmission eigenfunctions. We provide both theoretical and numerical justifications.
We study the error analysis of the weak Galerkin finite element method in [24, 38] (WG-FEM) for the Helmholtz problem with large wave number in two and three dimensions. Using a modified duality argument proposed by Zhu and Wu, we obtain the pre-asymptotic error estimates of the WG-FEM. In particular, the error estimates with explicit dependence on the wave number k are derived. This shows that the pollution error in the broken H1-norm is bounded by under mesh condition k7/2h2≤C0 or (kh)2+k(kh)p+1≤C0, which coincides with the phase error of the finite element method obtained by existent dispersion analyses. Here h is the mesh size, p is the order of the approximation space and C0 is a constant independent of k and h. Furthermore, numerical tests are provided to verify the theoretical findings and to illustrate the great capability of the WG-FEM in reducing the pollution effect.
In this paper, we study the role of mesh quality on the accuracy of linear finite element approximation. We derive a more detailed error estimate, which shows explicitly how the shape and size of elements, and symmetry structure of mesh effect on the error of numerical approximation. Two computable parameters Ge and Gv are given to depict the cell geometry property and symmetry structure of the mesh. In compare with the standard a priori error estimates, which only yield information on the asymptotic error behaviour in a global sense, our proposed error estimate considers the effect of local element geometry properties, and is thus more accurate. Under certain conditions, the traditional error estimates and supercovergence results can be derived from the proposed error estimate. Moreover, the estimators Ge and Gv are computable and thus can be used for predicting the variation of errors. Numerical tests are presented to illustrate the performance of the proposed parameters Ge and Gv.
Admissible regions for higher-order finite volume method (FVM) grids are considered. A new Hermite quintic FVM and a new hybrid quintic FVM are constructed to solve elliptic boundary value problems, and the corresponding admissible regions are investigated. A sufficient condition for the uniform local-ellipticity of the new hybrid quintic FVM is obtained when its admissible region is known. In addition, the admissible regions for a large number of higher-order FVMs are provided. For the same class of FVM (Lagrange, Hermite or hybrid), the higher order FVM has a smaller admissible region such that stronger geometric restrictions are required to guarantee its uniform local-ellipticity.