We investigate the role of pressure, via its Hessian tensor ${\boldsymbol {H}}$, on amplification of vorticity and strain-rate and contrast it with other inviscid nonlinear mechanisms. Results are obtained from direct numerical simulations of isotropic turbulence with Taylor-scale Reynolds number in the range 140–1300. Decomposing ${\boldsymbol {H}}$ into local isotropic (${\boldsymbol {H}}^{I}$) and non-local deviatoric (${\boldsymbol {H}}^{D}$) components reveals that ${\boldsymbol {H}}^{I}$ depletes vortex stretching, whereas ${\boldsymbol {H}}^{D}$ enables it, with the former slightly stronger. The resulting inhibition is significantly weaker than the nonlinear mechanism which always enables vortex stretching. However, in regions of intense vorticity, identified using conditional statistics, contribution from ${\boldsymbol {H}}$ prevails over nonlinearity, leading to overall depletion of vortex stretching. We also observe near-perfect alignment between vorticity and the eigenvector of ${\boldsymbol {H}}$ corresponding to the smallest eigenvalue, which conforms with well-known vortex-tubes. We discuss the connection between this depletion, essentially due to (local) ${\boldsymbol {H}}^{I}$, and recently identified self-attenuation mechanism (Buaria et al., Nat. Commun., vol. 11, 2020, p. 5852), whereby intense vorticity is locally attenuated through inviscid effects. In contrast, the influence of ${\boldsymbol {H}}$ on strain-amplification is weak. It opposes strain self-amplification, together with vortex stretching, but its effect is much weaker than vortex stretching. Correspondingly, the eigenvectors of strain and ${\boldsymbol {H}}$ do not exhibit any strong alignments. For all results, the dependence on Reynolds number is very weak. In addition to the fundamental insights, our work provides useful data and validation benchmarks for future modelling endeavours, for instance in Lagrangian modelling of velocity gradient dynamics, where conditional ${\boldsymbol {H}}$ is explicitly modelled.