It is theoretically known that an isotropic chemically active particle in an unbounded solution undergoes symmetry breaking when the intrinsic Péclet number ${{Pe}}$ exceeds a finite critical value (Michelin et al., Phys. Fluids, vol. 25, 2013, 061701). At that value, a transition takes place from a stationary state to spontaneous motion. In two dimensions, where no stationary state is possible in an unbounded domain, a linear stability analysis in a large bounded domain (Hu et al., Phys. Rev. Lett., vol. 123, 2019, 238004) reveals that the critical ${{Pe}}$ value slowly diminishes as the domain size increases. Motivated by these findings, we here consider an unbounded domain from the outset, addressing the two-dimensional problem of steady self-propulsion with a focus on the limit ${{Pe}}\ll 1$. This singular limit is handled using matched asymptotic expansions, conceptually decomposing the fluid domain into a particle-scale region, where the leading-order solute transport is diffusive, and a remote region, where diffusion and advection are comparable. The expansion parameter is provided by the product of ${{Pe}}$ and $U$, the unknown particle speed (normalised by the standard autophoretic scale). The problem is unconventional in that the scaling of $U$ with ${{Pe}}$ must be determined in the course of the perturbation analysis. The resulting approximation, $U=4\exp ({-2/{Pe}-\gamma _{E}-1})/{{Pe}}$ ($\gamma _{E}$ being the Euler–Mascheroni constant), is in remarkable agreement with the numerical predictions of Hu et al. in the common interval of validity.