We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend the notion of regular coherence from rings to additive categories and show that well-known consequences of regular coherence for rings also apply to additive categories. For instance, the negative K-groups and all twisted Nil-groups vanish for an additive category, if it is regular coherent. This will be applied to nested sequences of additive categories, motivated by our ongoing project to determine the algebraic K-theory of the Hecke algebra of a reductive p-adic group.
We present some fundamental aspects of the representation theory of reductive p-adic groups, mapping out some recent developments, including the ABPS conjecture and the description of the structure of the reduced C*-algebras of reductive groups. The exposition proceeds fairly rapidly, but is essentially self-contained.
We elaborate on the construction of the Evans chain complex for higher-rank graph $C^*$-algebras. Specifically, we introduce a block matrix presentation of the differential maps. These block matrices are then used to identify a wide family of higher-rank graph $C^*$-algebras with trivial K-theory. Additionally, in the specialised case where the higher-rank graph consists of one vertex, we are able to use the Künneth theorem to explicitly compute the homology groups of the Evans chain complex.
We apply Takesaki’s and Connes’s ideas on structure analysis for type III factors to the study of links (a short term of Markov kernels) appearing in asymptotic representation theory.
Clausen a prédit que le groupe des classes d’idèles de Chevalley d’un corps de nombres F apparaît comme le premier K-groupe de la catégorie des F-espaces vectoriels localement compacts. Cela s’est avéré vrai, et se généralise même aux groupes K supérieurs dans un sens approprié. Nous remplaçons F par une $\mathbb {Q}$-algèbre semi-simple, et obtenons le groupe des classes d’idèles noncommutatif de Fröhlich de manière analogue, modulo les éléments de norme réduite une. Même dans le cas du corps de nombres, notre preuve est plus simple que celle existante, et repose sur le théorème de localisation pour des sous-catégories percolées. Enfin, en utilisant la théorie des corps de classes, nous interprétons la loi de réciprocité d’Hilbert (ainsi qu’une variante noncommutative) en termes de nos résultats.
Clausen predicted that Chevalley’s idèle class group of a number field F appears as the first K-group of the category of locally compact F-vector spaces. This has turned out to be true and even generalizes to the higher K-groups in a suitable sense. We replace F by a semisimple $\mathbb {Q}$-algebra and obtain Fröhlich’s noncommutative idèle class group in an analogous fashion, modulo the reduced norm one elements. Even in the number field case, our proof is simpler than the existing one and based on the localization theorem for percolating subcategories. Finally, using class field theory as input, we interpret Hilbert’s reciprocity law (as well as a noncommutative variant) in terms of our results.
We show that continuous group homomorphisms between unitary groups of unital C*-algebras induce maps between spaces of continuous real-valued affine functions on the trace simplices. Under certain $K$-theoretic regularity conditions, these maps can be seen to commute with the pairing between $K_0$ and traces. If the homomorphism is contractive and sends the unit circle to the unit circle, the map between spaces of continuous real-valued affine functions can further be shown to be unital and positive (up to a minus sign).
We prove that crossed products of fiberwise essentially minimal zero-dimensional dynamical systems, a class that includes systems in which all orbit closures are minimal, have isomorphic K-theory if and only if the dynamical systems are strong orbit equivalent. Under the additional assumption that the dynamical systems have no periodic points, this gives a classification theorem including isomorphism of the associated crossed product $C^*$-algebras as well. We additionally explore the K-theory of such crossed products and the Bratteli diagrams associated to the dynamical systems.
We investigate almost minimal actions of abelian groups and their crossed products. As an application, given multiplicatively independent integers p and q, we show that Furstenberg’s $\times p,\times q$ conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the $C^*$-algebra of the group $\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2$. We also compute the primitive ideal space and K-theory of $C^*(\mathbb {Z}[\frac {1}{pq}]\rtimes \mathbb {Z}^2)$.
Consider a commutative ring $R$ and a simplicial map, $X\mathop {\longrightarrow }\limits ^{\pi }K,$ of finite simplicial complexes. The simplicial cochain complex of $X$ with $R$ coefficients, $\Delta ^*X,$ then has the structure of an $(R,K)$ chain complex, in the sense of Ranicki . Therefore it has a Ranicki-dual $(R,K)$ chain complex, $T \Delta ^*X$. This (contravariant) duality functor $T:\mathcal {B} R_K\to \mathcal {B} R_K$ was defined algebraically on the category of $(R,K)$ chain complexes and $(R,K)$ chain maps.
Our main theorem, 8.1, provides a natural $(R,K)$ chain isomorphism:
\[ T\Delta^*X\cong C(X_K) \]
where $C(X_K)$ is the cellular chain complex of a CW complex $X_K$. The complex $X_K$ is a (nonsimplicial) subdivision of the complex $X$. The $(R,K)$ structure on $C(X_K)$ arises geometrically.
Loday’sassembly maps approximate the K-theory of group rings by the K-theory of the coefficient ring and the corresponding homology of the group. We present a generalisation that places both ingredients on the same footing. Building on Elmendorf–Mandell’s multiplicativity results and our earlier work, we show that the K-theory of Lawvere theories is lax monoidal. This result makes it possible to present our theory in a user-friendly way without using higher-categorical language. It also allows us to extend the idea to new contexts and set up a nonabelian interpolation scheme, raising novel questions. Numerous examples illustrate the scope of our extension.
It is shown that the colored isomorphism class of a unital, simple, $\mathcal {Z}$-stable, separable amenable C$^*$-algebra satisfying the universal coefficient theorem is determined by its tracial simplex.
We show that every orbispace satisfying certain mild hypotheses has ‘enough’ vector bundles. It follows that the $K$-theory of finite rank vector bundles on such orbispaces is a cohomology theory. Global presentation results for smooth orbifolds and derived smooth orbifolds also follow.
Scarparo has constructed counterexamples to Matui’s HK-conjecture. These counterexamples and other known counterexamples are essentially principal but not principal. In the present paper, a counterexample to the HK-conjecture that is principal is given. Like Scarparo’s original counterexample, our counterexample is the transformation groupoid associated to a particular odometer. However, the relevant group is the fundamental group of a flat manifold (and hence is torsion-free) and the associated odometer action is free. The examples discussed here do satisfy the rational version of the HK-conjecture.
Using a result of Vdovina, we may associate to each complete connected bipartite graph
$\kappa $
a two-dimensional square complex, which we call a tile complex, whose link at each vertex is
$\kappa $
. We regard the tile complex in two different ways, each having a different structure as a
$2$
-rank graph. To each
$2$
-rank graph is associated a universal
$C^{\star }$
-algebra, for which we compute the K-theory, thus providing a new infinite collection of
$2$
-rank graph algebras with explicit K-groups. We determine the homology of the tile complexes and give generalisations of the procedures to complexes and systems consisting of polygons with a higher number of sides.
Given an ample groupoid, we construct a spectral sequence with groupoid homology with integer coefficients on the second sheet, converging to the K-groups of the (reduced) groupoid C
$^*$
-algebra, provided the groupoid has torsion-free stabilizers and satisfies a strong form of the Baum–Connes conjecture. The construction is based on the triangulated category approach to the Baum–Connes conjecture developed by Meyer and Nest. We also present a few applications to topological dynamics and discuss the HK conjecture of Matui.
We prove several results showing that the algebraic $K$-theory of valuation rings behaves as though such rings were regular Noetherian, in particular an analogue of the Geisser–Levine theorem. We also give some new proofs of known results concerning cdh descent of algebraic $K$-theory.
We prove the strong Suslin reciprocity law conjectured by A. Goncharov. The Suslin reciprocity law is a generalization of the Weil reciprocity law to higher Milnor $K$-theory. The Milnor $K$-groups can be identified with the top cohomology groups of the polylogarithmic motivic complexes; Goncharov's conjecture predicts the existence of a contracting homotopy underlying Suslin reciprocity. The main ingredient of the proof is a homotopy invariance theorem for the cohomology of the polylogarithmic motivic complexes in the ‘next to Milnor’ degree. We apply these results to the theory of scissors congruences of hyperbolic polytopes. For every triple of rational functions on a compact projective curve over $\mathbb {C}$ we construct a hyperbolic polytope (defined up to scissors congruence). The hyperbolic volume and the Dehn invariant of this polytope can be computed directly from the triple of rational functions on the curve.
We study a class of two-variable polynomials called exact polynomials which contains $A$-polynomials of knot complements. The Mahler measure of these polynomials can be computed in terms of a volume function defined on the vanishing set of the polynomial. We prove that the local extrema of the volume function are on the two-dimensional torus and give a closed formula for the Mahler measure in terms of these extremal values. This formula shows that the Mahler measure of an irreducible and exact polynomial divided by $\pi$ is greater than the amplitude of the volume function. We also prove a K-theoretic criterion for a polynomial to be a factor of an $A$-polynomial and give a topological interpretation of its Mahler measure.
In this paper we prove a categorification of the Grothendieck–Riemann–Roch theorem. Our result implies in particular a Grothendieck–Riemann–Roch theorem for Toën and Vezzosi's secondary Chern character. As a main application, we establish a comparison between the Toën–Vezzosi Chern character and the classical Chern character, and show that the categorified Chern character recovers the classical de Rham realization.
Since their inception in the 1930s by von Neumann, operator algebras have been used to shed light on many mathematical theories. Classification results for self-adjoint and non-self-adjoint operator algebras manifest this approach, but a clear connection between the two has been sought since their emergence in the late 1960s. We connect these seemingly separate types of results by uncovering a hierarchy of classification for non-self-adjoint operator algebras and $C^{*}$-algebras with additional $C^{*}$-algebraic structure. Our approach naturally applies to algebras arising from $C^{*}$-correspondences to resolve self-adjoint and non-self-adjoint isomorphism problems in the literature. We apply our strategy to completely elucidate this newly found hierarchy for operator algebras arising from directed graphs.