We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recurrent respiratory papillomatosis is a rare disease characterised by growth of papilloma within the respiratory tract. The disease course is variable but can require frequent surgical interventions alongside adjuvant medical treatments. There is no definitive curative treatment or gold-standard guidelines for management. We aimed to evaluate current and potential future adjuvant treatments and propose a management guideline for adult patients.
Methods
Relevant articles were identified through searching databases, reference lists and grey literature.
Results
Systemic bevacizumab appears to be the most effective adjuvant treatment currently available. However, intralesional cidofovir also achieves a high complete-response rate in adults and the Gardasil vaccine demonstrates preventative and therapeutic value. The INO-3107 DNA vaccine is a promising potential future adjuvant treatment.
Conclusions
This review provides a detailed examination of current and potential future adjuvant treatments. Based on the literature, we have developed a management guideline for adult patients with recurrent respiratory papillomatosis.
Premature infants have a risk of neurodevelopmental deficits. Little is known, however, about how retinopathy of prematurity (ROP) affects visual motor integration (VMI), which is necessary for both fine motor skills and further school abilities. Due to the systemic escape of bevacizumab in the treatment of ROP, concerns regarding the long-term neurodevelopmental effect of the drug have arisen. The aim is to evaluate VMI and motor development long-term outcomes after intravitreal bevacizumab (IVB) injection and laser treatment for ROP. Two groups of premature children were included: Bevacizumab group – 16 premature children who received IVB treatment and laser group – 23 premature children who underwent laser photocoagulation treatment in this single center cross-sectional study. At 2–6 years of age, VMI (Beery–Buktenica Developmental Test), motor development (Peabody Developmental Motor Scales-2), visual acuity, and refractive status were assessed. The incidence of abnormal visual function was significantly higher in bevacizumab group than in laser group (p = 0.022). The incidence of abnormal VMI skill was significantly higher in bevacizumab group than in laser group (p = 0.024). Incidences of abnormal gross, fine, and total motor skills were significantly higher in bevacizumab group compared to laser group (p < 0.05). Premature children who received bevacizumab for ROP demonstrated significantly lower VMI and motor development features than those with laser treatment at preschool age. Although our results suggest the relevance of bevacizumab injection in impaired VMI and motor development outcomes, general level of sickness rather than treatment might be the cause of delayed motor development.
The production of broadband, terawatt terahertz (THz) pulses has been demonstrated by irradiating relativistic lasers on solid targets. However, the generation of extremely powerful, narrow-band and frequency-tunable THz pulses remains a challenge. Here, we present a novel approach for such THz pulses, in which a plasma wiggler is elaborated by a table-top laser and a near-critical density plasma. In such a wiggler, the laser-accelerated electrons emit THz radiations with a period closely related to the plasma thickness. The theoretical model and numerical simulations predict that a THz pulse with a laser–THz energy conversion of over 2.0%, an ultra-strong field exceeding 80 GV/m, a divergence angle of approximately 20° and a center frequency tunable from 4.4 to 1.5 THz can be generated from a laser of 430 mJ. Furthermore, we demonstrate that this method can work across a wide range of laser and plasma parameters, offering potential for future applications with extremely powerful THz pulses.
To analyse the comparative clinical outcomes and clinicopathological significance of vocal fold leukoplakia lesions treated by appearance classification and traditional methods.
Method
A total of 1442 vocal fold leukoplakia patients were enrolled. Group A patients were treated according to appearance classification and Group B patients were treated according to traditional methods.
Results
In Group A, 24.4, 14.9 and 60.6 per cent of patients had grade I, II and III dysplasia, respectively. Grade I dysplasia (63.4 per cent) was more than twice as frequent in Group B patients than in Group A patients, while grade II dysplasia (20.4 per cent) and grade III dysplasia (16.2 per cent) were significantly less frequent in Group B patients than in Group A patients (p = 0.000). There was a significant correlation between vocal fold leukoplakia appearance and the degree of dysplasia (p = 0.000). The recurrence and malignant transformation rates (17.6 and 31 per cent, respectively) in Group B were significantly greater than those in Group A (10.8 and 25.9 per cent, respectively) (p = 0.000).
Conclusion
Vocal fold leukoplakia appearance classification is useful for guiding treatment decision-making and could help to improve therapeutic accuracy.
Sperm motility is an important factor for successful fertilization and embryo development. If a patient presents only immotile sperm in the ejaculate or in a testicular sample, a viability test can help to identify among the immotile sperm those that are viable and suitable for intracytoplasmic sperm injection (ICSI). Different sperm viability tests have been introduced, and if they are applied properly, there is a good chance for successful treatment.
Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an opportunity to reach high values of the dimensionless rest-frame acceleration $\chi$ and thereby invoke processes described by strong-field quantum electrodynamics (SFQED). Measuring deviations from the results of Furry-picture perturbation theory in SFQED at high $\chi$ can be valuable for testing existing predictions, as well as for guiding further theoretical developments. Nevertheless, such experimental measurements are challenging due to the probabilistic nature of the interaction processes, dominating signals of low-$\chi$ interactions and limited capabilities to control and measure the alignment and synchronization in such collision experiments. Here we elaborate a methodology of using approximate Bayesian computations for drawing statistical inferences based on the results of many repeated experiments despite partially unknown collision parameters that vary between experiments. As a proof-of-principle, we consider the problem of inferring the effective mass change due to coupling with the strong-field environment.
The photon signal-to-noise ratio (SNR) is defined in terms of statistical quantities, and the Poisson and Gaussian probability distribution functions are defined and described. Those distributions are applied to lidar measurements, and the effect of background light on lidar SNR is quantified. The signal-limited and background-limited SNR regimes are defined. The lidar equation is then introduced as a model of the range-dependent lidar signal, and the background model is a constant additional term. All the variables in both models are introduced and defined. They include the number of photons in each laser pulse, the optical efficiencies of the transmitter and receiver, the geometrical function, the receiver solid angle, the range bin length, the volume backscatter coefficient, the extinction coefficient, the spectral radiance of the background, the receiver field of view, the receiver optical bandpass, and the sampling interval of the data system. Finally, a lidar system known as the Eye safe Atmospheric Research Lidar (EARL) is introduced because it is used as an example throughout the rest of the book.
Around a third of patients have drug-resistant epilepsy (DRE). This is crucially and easily determined if a patient continues to have seizures after being on two adequately dosed and appropriately selected antiseizure medicines (ASMs). For these patients, your initial efforts to make a specific and localized diagnosis will inform next treatment decisions. If a patient presents suddenly with DRE, it is key to assess for a possible autoimmune cause, as a separate treatment pathway should be considered. Otherwise, consider epilepsy surgery as an effective treatment. These treatments include brain resections and neuromodulation. Minimally invasive techniques have recently become more common, including laser surgery as well as stereotactically placed depth electrodes. Given the prevalence of neurostimulators, consideration for obtaining MRIs in patients with these devices is addressed, as pathways exist for all of these patients to safely undergo MRI testing.
We learn time-dependent perturbation theory, where we focus on finding the probability that an applied perturbation causes a transition between energy levels of the unperturbed Hamiltonian. We calculate the probability amplitude for a transition from an initial state to a final state subject to a time-dependent perturbation. We learn that an excited state in an atom has a finite lifetime due to spontaneous emission. We learn that electric dipole transitions obey selection rules.
This paper describes a reconstruction method for atom probe tomography based on a bottom-up approach accounting for (i) the final tip morphology (which is frequently induced by inhomogeneous evaporation probabilities across the tip surface due to laser absorption, heat diffusion effects, and inhomogeneous material properties), (ii) the limited (and changing) field of view, and (iii) the detector efficiency. The reconstruction starts from the final tip morphology and reverses the evaporation sequence through the pseudo-deposition of defined small reconstruction volumes, which are then stacked together to create the full three-dimensional (3D) tip. The subdivision in small reconstruction volumes allows the scheme to account for the changing tip shape and field of view as evaporation proceeds. Atoms within the same small reconstruction volume are reconstructed at once by placing atoms back onto their possible lattice sites through a trajectory-matching process involving simulated and experimental hit maps. As the ejected ion trajectories are simulated using detailed electrostatic modeling inside the chamber, no simplifications have been imposed on the shape of the trajectories, projection laws, or tip surface. We demonstrate the superior performance of our approach over the conventional reconstruction method (Bas) for an asymmetrical tip shape.
This appendix situates quantum technologies as a product of the merger of quantum mechanics, the theory of the very small; and information theory, the theory of how information is communicated and quantified. These intersections of these fields create quantum information science (QIS), provide a basis for understanding quantum sensing, computing, and communication. This appendix explains quantum scale and starts an exploration as to why effects at the quantum scale are so radically different from humans' day-to-day experience.
Micromanipulation technology has evolved rapidly over the past 30 years to meet the needs of assisted reproduction practitioners. The clinical outcome of micromanipulation and microinjection procedures is highly dependent upon practitioner skills as well as the quality and reliability of the equipment used. Well engineered mechanical, hydraulic and electronic micromanipulation systems are available and can be mounted upon inverted microscopes supplied by all of the major microscope companies. These systems are complemented by a range of oil and air injectors in addition to anti-vibration tables and lasers. In future, it is possible that some micromanipulation systems will become automated using computer algorithms, enabling robotic procedures to be performed, eliminating variability in practitioner performance.
We present a diode-pumped, electro-optically Q-switched Tm:YAG laser with a cryogenically cooled laser crystal at 120 K. Output pulses of up to 2.55 mJ and 650 ns duration were demonstrated in an actively Q-switched configuration with a repetition rate of 1 Hz. By using cavity dumping the pulse duration was shortened to 18 ns with only a slightly lower output energy of 2.22 mJ. Furthermore, using a simplified rate equation model, we discuss design constraints on the pump fluence in a pulse pump approach for Tm:YAG to maximize the energy storage capability at a given pump power.
Realizing packaged state-of-the-art performance of monolithic microwave integrated circuits (MMICs) operating at millimeter wavelengths presents significant challenges in terms of electrical interface circuitry and physical construction. For instance, even with the aid of modern electromagnetic simulation tools, modeling the interaction between the MMIC and its package embedding circuit can lack the necessary precision to achieve optimum device performance. Physical implementation also introduces inaccuracies and requires iterative interface component substitution that can produce variable results, is invasive and risks damaging the MMIC. This paper describes a novel method for in situ optimization of packaged millimeter-wave devices using a pulsed ultraviolet laser to remove pre-selected areas of interface circuit metallization. The method was successfully demonstrated through the optimization of a 183 GHz low noise amplifier destined for use on the MetOp-SG meteorological satellite series. An improvement in amplifier output return loss from an average of 12.9 dB to 22.7 dB was achieved across an operational frequency range of 175–191 GHz and the improved circuit reproduced. We believe that our in situ tuning technique can be applied more widely to planar millimeter-wave interface circuits that are critical in achieving optimum device performance.
Additive manufacturing (AM) has made long strides in the recent past and rapidly evolved into a promising alternative in specific applications. The aircraft industry is not an exception to this. The true just-intime production possibility is critical for the aircraft maintenance industries, though the lack of material freedom is a major hurdle. Several fire-retardant materials were investigated for AM in the aerospace context, but mainly for fused deposition modeling (FDM). The material consolidation constraints in FDM led to the expansion to the use of selective laser sintering (SLS) to some extent. Nevertheless, the material options are still limited, proprietary, and lack scientific insights into the material consolidation mechanics. Attempts are made in this paper to fill this gap, evaluating a new fire-retardant material for processing by SLS. Experiments conducted to ascertain the material, process, structure, and consolidation relationships indicated energy density levels 0.062–0.070 J/mm2 with laser power 13 W and scan speed varied slightly around 390 mm/s to give the best laser sintering and mechanical property results in polyetherimide powders.
Nickel-coated carbon nanotubes (Ni-CNTs) were achieved by electroless plating. Laser cladded IN718 and IN718 with 10, 30, and 50 wt% additions of Ni-CNTs were fabricated. The structural evolution of CNTs in the laser-deposited layers was studied; the microstructure, tensile, and wear properties of the laser-cladded alloys were characterized. The results show that CNTs in the laser-deposited layers are mostly transformed to carbon nanoproducts (CNPs) in the forms of graphene nanosheets, graphene fragments, carbon nanoribbons, and diamond-like nanoparticles by unzipping, interbonding, collapsing, and curvature of CNTs. The interdendritic Laves phase formation is dramatically depressed due to the addition of Ni-CNTs, but the excess addition of the Ni-CNTs can undesirably increase the formation of NbC. The addition of Ni-CNTs effectively improves the tensile and wear properties. The most superior tensile and wear properties are achieved in the layers with 30 and 50 wt% additions of Ni-CNTs, respectively. The generation of intermetallic phase and CNPs are revealed to be two dominant effects both on the tensile and wear properties of the laser-cladded alloys.
Additively manufactured parts produced via laser powder bed fusion (LPBF) have limitations in their applications due to post-processing requirements caused by high surface roughness. The characteristics of side-skin surfaces are generally assumed to be dominated by adhered powder particles. This work aims to analyze and interpret the effects of LPBF processing parameters on side-skin surfaces. As such, this work has two sections to investigate the effect of (i) core and (ii) border LPBF parameters on side-skin surface roughness for Ti–6Al–4V. The findings show that there is a robust correlation between both core and border LPBF parameters on side-skin surface morphologies. In terms of core LPBF parameters, an interaction between laser power and beam velocity is shown to influence side-skin surface roughness, resulting in Sa values in the range of 11–26 μm. Additionally, a preliminary investigation into the effect of melting mode phenomena at the border leads to a possibility of obtaining Sa values of <10 μm, with reduced effects of adhered and partially fused powder.
We observe experimentally periodic proton beam filamentation in laser-produced dense plasma using multilayered (CH–Al–CH) sandwich targets. The accelerated MeV proton beams from these targets exhibit periodic frozen filaments up to 5–10 µm as a result of resistive Weibel instabilities in the expanding plasma. The evolution of strong self-generated resistive magnetic fields at the targets interface is attributed to such plasma effects, which are supported, by our theory and simulations. We suggest that the resistive Weibel instability could be effectively employed to understand the evolution of magnetic fields in laser-generated plasma in the astrophysics scenario or the advanced fast igniter approach of the inertial confinement fusion.
In this research, a novel titanium metallic composite, Ti6Al4V powder mixed with 5 at.% Nb powder, was fabricated by selective laser melting (SLM). The effect of Nb addition on their phase transformation, microstructure evolution, mechanical properties, and corrosion behavior were studied. Interestingly, the novel alloy shows a combination of superior plastic deformation (εp= 18.9 ± 1.8%) and high compressive strength (σc= 1593 ± 38 MPa), which is 60.2 and 3.2% higher than that of the SLM-processed Ti6Al4V alloy under optimum printing parameters, respectively. However, the yield strength of Ti6Al4V + 5Nb (973 ± 45 MPa) is lower than that of the Ti6Al4V alloy (1066 ± 12 MPa). The solidification mechanism changes from planar to cellular mode with Nb addition. The ultrafine microstructure β grains are observed, which show a columnar shape and cellular shape. More importantly, the volume fraction of the β phase is significantly increased from 3.7% to 20.4% because of the Nb addition. In addition, the Ti6Al4V + 5Nb alloy possesses better corrosion resistance than the Ti6Al4V alloy. The research highlights that the addition of Nb powder in Ti6Al4V processed by SLM can improve the mechanical properties and corrosion resistance of the material.
Laser surface treatment is widely used as an engineering technique due to its special characteristics and several advantages over other surface modification techniques. In the present study, elemental mechanically pre-alloyed powder consisting of Niobium, Titanium and Nickel was deposited onto a grade 5 Titanium alloy substrates to form a high wear resistance coating. This was such that the surface mechanical properties of the base metal can be improved. The fabricated samples were characterised using optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), Differential Scanning Calorimeter (DSC), micro hardness tester and wear machine. The deposited coatings were well bonded and consisted of various phases. Hardness was seen decrease with increase in Nb content while wear resistance increasing with increase in niobium content.