We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Investigations of stable carbon isotope composition in α-cellulose extracted from tree rings of pines (Pinus sylvestris L.) growing in the unpolluted Suwałki region, northeastern part of Poland, are undertaken. The presented carbon isotope record covers the period of 1931–2003. Values of δ13C measured in the tree ring α-cellulose are compared to meteorological data. These δ13C values in tree ring cellulose respond to summer temperature, insolation, relative humidity, and precipitation. The best correlation is observed between relative humidity and carbon isotope data. The August relative humidity is found more influential on δ13C values than relative humidity for any other month or combination of months (r = –0.65). Relations between isotopic and meteorological data demonstrate that precipitation influences the stable carbon isotopic ratios to a lower extent than humidity. The intensity and duration of summer rainfall events can determine this effect. The temporal stability of climate-proxy connections is an important issue in paleoclimatic reconstruction. Therefore, the temporal stability of climatic signals recorded by stable carbon isotopes is analyzed in this research using the moving correlation function for moving intervals with a 25-year window. Based on those investigations the highest time stability of correlation was found for the carbon isotope and the August relative humidity. More variability is observed for the correlation of δ13C values with precipitation.
The application of the theory and methodology presented in the previous chapters for formulating and solving the population balance equation (PBE), as well as its coupling with fluid flow and computational fluid dynamics (CFD), is here demonstrated via three case studies. The first case study is about synthesis of silica nanoparticles in a laminar flame. The second one involves soot formation in laminar and turbulent flames. The third one is about precipitation of barium sulphate crystals in a turbulent T-mixer flow. In each case, the deployment of the population balance methodology is presented in an educational manner, following the four main steps outlined in Chapter 1.
Legionellosis is a respiratory infection caused by Legionella sp. that is found in water and soil. Infection may cause pneumonia (Legionnaires’ Disease) and a milder form (Pontiac Fever). Legionella colonizes water systems and results in exposure by inhalation of aerosolized bacteria. The incubation period ranges from 2 to 14 days. Precipitation and humidity may be associated with increased risk. We used Medicare records from 1999 to 2020 to identify hospitalizations for legionellosis. Precipitation, temperature, and relative humidity were obtained from the PRISM Climate Group for the zip code of residence. We used a time-stratified bi-directional case-crossover design with lags of 20 days. Data were analyzed using conditional logistic regression and distributed lag non-linear models. A total of 37 883 hospitalizations were identified. Precipitation and relative humidity at lags 8 through 13 days were associated with an increased risk of legionellosis. The strongest association was precipitation at day 10 lag (OR = 1.08, 95% CI = 1.05–1.11 per 1 cm). Over 20 days, 3 cm of precipitation increased the odds of legionellosis over four times. The association was strongest in the Northeast and Midwest and during summer and fall. Precipitation and humidity were associated with hospitalization among Medicare recipients for legionellosis at lags consistent with the incubation period for infection.
Studies on climate variables and food pathogens are either pathogen- or region-specific, necessitating a consolidated view on the subject. This study aims to systematically review all studies on the association of ambient temperature and precipitation on the incidence of gastroenteritis and bacteraemia from Salmonella, Shigella, Campylobacter, Vibrio, and Listeria species. PubMed, Ovid MEDLINE, Scopus, and Web of Science databases were searched up to 9 March 2023. We screened 3,204 articles for eligibility and included 83 studies in the review and three in the meta-analysis. Except for one study on Campylobacter, all showed a positive association between temperature and Salmonella, Shigella, Vibrio sp., and Campylobacter gastroenteritis. Similarly, most of the included studies showed that precipitation was positively associated with these conditions. These positive associations were found regardless of the effect measure chosen. The pooled incidence rate ratio (IRR) for the three studies that included bacteraemia from Campylobacter and Salmonella sp. was 1.05 (95 per cent confidence interval (95% CI): 1.03, 1.06) for extreme temperature and 1.09 (95% CI: 0.99, 1.19) for extreme precipitation. If current climate trends continue, our findings suggest these pathogens would increase patient morbidity, the need for hospitalization, and prolonged antibiotic courses.
In order to provide representative measurements of precipitation (rainfall, snow and hail, drizzle, sleet and so on), measuring devices must be deployed in suitable locations or sites and the instruments themselves exposed to the weather conditions they are intended to measure in a standardised manner. This chapter sets out what those standardised conditions of site and exposure are for measurements of precipitation, following the guidelines laid down by the World Meteorological Organization in the so-called CIMO guide (Commission for Instruments and Methods of Observation). Both manual and automated (recording) raingauge measurements are covered in detail, including tipping bucket, ground flush or pit gauges and weighing gauges, together with methods to decrease losses due to wind. Snowfall measurement methods are also covered.
Hydroxide and oxyhydroxide products of aluminum were formed at room temperature at an initial Al concentration of 2 × 10-3 M, pH 8.2, and at varying concentrations of organic and inorganic ligands commonly found in nature. The effectiveness of the ligands in promoting the formation of noncrystalline products over crystalline Al(OH)3 polymorphs was found to be in the following order: phthalate ≅ succinate < glutamate < aspartate < oxalate < silicate ≅ fluoride < phosphate < salicylate ≅ malate < tannate < citrate < tartrate. The lowest ligand/Al molar ratio at which the production of Al hydroxides or oxyhydroxides was inhibited ranged from 0.02 to 15. Above critical ligand/Al ratios, crystalline products were inhibited and ligands coprecipitated with noncrystalline products which remained unchanged for at least 5 months. Polydentate and large ligands generally were more inhibitive than those with fewer functional groups or of smaller size.
The perturbing ligands promoted and stabilized the formation of pseudoboehmite over crystalline Al(OH)3 polymorphs in the following sequence: chloride < sulfate < phthalate ≅ succinate < glutamate < silicate < aspartate < phosphate < salicylate ≅ malate < tannate < citrate < tartrate. The optimal range of the ligand/Al molar ratios for the formation of pseudoboehmite varied, for example, from 0.005–0.015 for tartrate to 600–1000 for chloride. Pseudoboehmite was not formed in the presence of fluoride.
Ferrous or ferric Perchlorate, 0.01 M, was reacted with calcite in stirred aqueous suspensions which were bubbled vigorously with an oxidizing purge gas. Two and three equivalents of CaCO3 were dissolved per mole of Fe2+ and Fe3+ neutralized, respectively. With Fe(ClO4)2, the crystalline Fe oxide products partially coated the calcite surface. The dominant products were lepidocrocite and goethite when the purge gas was air or 20% CO2 (balance air), respectively. After reaction with Fe2+ the edges and corners of the calcite crystals were generally rounded and the faces were non-uniformly pitted; however, after reaction with Fe3+, a mosaic pattern with distinct ridges and channels was evident on the calcite. These ridges were somewhat pitted, but distinct stepped dislocations were present leading to a featureless and generally flat channel floor. When the calcite was separated from the Fe solution by a semi-permeable membrane, precipitation occurred predominantly on the calcite side and on the Fe side of the membrane in the Fe2+ and Fe3+ systems, respectively.
Fe oxyhydroxides precipitated from the Fe(ClO4)3 and Fe(ClO4)2 solutions by different mechanisms. In the Fe(ClO4)3 system, although the initial reaction may have been at the calcite surface, the bulk of the poorly crystalline ferrihydrite was formed by hydrolysis of Fe polymers in suspension. Neutralization occurred by the reaction with basic products of a surface-controlled dissolution of calcite, rather than by a direct reaction of acidic polymers with the calcite surface. In the Fe(ClO4)2 system, lepidocrocite or goethite formed by the partial hydrolysis of Fe2+ or Fe3+ by reaction with calcite or the basic products of calcite dissolution and subsequent precipitation of simple Fe species on existing FeOOH nuclei.
Deposits of sepiolite, trioctahedral smectite (mixed-layer kerolite/stevensite), calcite, and dolomite, found in the Amargosa Flat and Ash Meadows areas of the Amargosa Desert were formed by precipitation from nonsaline solutions. This mode of origin is indicated by crystal growth patterns, by the low Al content for the deposits, and by the absence of volcanoclastic textures. Evidence for low salinity is found in the isotopic compositions for the minerals, in the lack of abundant soluble salts in the deposits, and in the crystal habits of the dolomite. In addition, calculations show that modern spring water in the area can precipitate sepiolite, dolomite, and calcite following only minor evaporative concentration and equilibration with atmospheric CO2. However, precipitation of mixed-layer kerolite/stevensite may require a more saline environment. Mineral precipitation probably occurred during a pluvial period in shallow lakes or swamps fed by spring water from Paleozoic carbonate aquifers.
The reactivity of basal surfaces, steps and edges of muscovite was studied by imaging surface precipitates of PbCl2 using atomic force microscopy (AFM). We reacted PbCl2 solution with freshly cleaved muscovite surfaces and found that PbCl2 precipitates were formed on the basal surfaces, steps and edges. It was observed that PbCl2 precipitated preferentially along the steps compared to the basal surfaces and that PbCl2 precipitates at multiple-layer edges were needle-shaped and oriented in different directions. One of the muscovite samples we cleaved had muscovite fragments sitting on the freshly cleaved surfaces. These fragments resulted from previously formed cracks. Thus, we were able to compare the reactivity of the weathered surfaces with that of freshly cleaved surfaces. It was found that PbCl2 was not precipitated along the edges of previously cracked muscovite fragments. These results clearly demonstrated that the edges of freshly cleaved muscovite are the most reactive surface sites, whereas the edges of weathered muscovite are not as reactive. We believe that the surface reactivity of the edges of freshly cleaved muscovite is likely due to terminal or Al-OH1/2− groups on these crystalline surfaces, which favor adsorption of Pb2+ ions and the subsequent nucleation and precipitation reactions. We also investigated the effect of drying rate on the morphology of the surface precipitates. Fast drying resulted in a nearly complete covered surface with a leaflike morphology, whereas slow drying resulted in more isolated surface clusters.
SiO2 sols were made unstable by addition of Ca2+ ions. The resulting states of instability were classified as gelation, flocculation, and precipitation by means of observation, by checking the Tyndall effects on the supernatant or suspending solution, as appropriate, and by measuring the apparent densities of flocculated mass. The concentrations of free Ca2+ ions left in solution were measured by means of a Ca2+ ion selective electrode. The amounts sorbed onto SiO2 particles were then calculated by material balance. It was found that while the amount sorbed dictates the limit of stability, the SiO2 concentration in the mixture is an important factor deciding the state of instability. Depending on the SiO2 concentration, there were two distinct flocs with the apparent floc density of 6 ± 1 and 12 ± 1 mg SiO2/ml.
The influence of tartaric acid and pH on chemical composition, morphology, surface area, and porosity of short-range ordered Al precipitation products was studied. Samples were prepared (1) at pH 8.0 and at the tartaric acid/Al molar ratios (R) ranging from 0 to 0.25 and (2) at R = 0.1 and in the pH range of 4.7 to 10.0. In Al precipitation products formed at pH 8.0, the organic C content increased from 8 g/kg (R = 0.01) to 93 g/kg (R = 0.25), whereas the Al content decreased from 363 g/kg (R = 0.01) to 271 g/kg (R = 0.25). The specific surface of the materials was particularly high (>400 m2/g) when samples were prepared at R < 0.1, but drastically decreased when samples were prepared at R > 0.1 (e.g., 78.6 m2/g at R = 0.25). When the C content was relatively high (>45 g/kg), aggregation between the particles was promoted, and the specific surface, thus, decreased. Electron optical observations showed that such samples were strongly aggregated. In the materials prepared at R = 0.1, but at different initial pH values, the C content decreased from 90 g/kg (pH = 4.7) to 25 g/kg (pH = 10.0). As a consequence, the lower the initial pH, the lower was the specific surface of the Al precipitation products. Tartaric acid plays an important role in both Pertubation of crystallization of Al hydroxides and promotion of aggregation of the reaction products. The two processes counteract in influencing the specific surface and pore volume of Al hydroxides.
Heating treatments greatly affected the specific surface and porosity of Al precipitation products. The specific surface and porosity of the samples generally increased by increasing the temperature up to 400°C and then decreased. Small amounts of C still remained after heating some samples for 12 hr at 600°C.
Extreme precipitation events are occurring more intensely in Canada. This can contaminate water sources with enteric pathogens, potentially increasing the risk of acute gastrointestinal illness. This study aimed to investigate the relationship between extreme precipitation and emergency department (ED) visits for acute gastrointestinal illness in Toronto from 2012 to 2022. Distributed lag non-linear models were constructed on ED visit counts with a Quasi Poisson distribution. Extreme precipitation was modelled as a 21-day lag variable, with a linear relationship assumed at levels ≧95th percentile. Separate models were also conducted on season-specific data sets. Daily precipitation and gastrointestinal illness ED visits ranged between 0 to 126 mm, and 12 to 180 visits respectively. Overall, a 10-mm increase in precipitation >95th percentile had no significant relationship with the risk of ED visits. However, stratification by seasons revealed significant relationships during spring (lags 1–19, peak at lag 14 RR = 1.04; 95% CI: 1.03, 1.06); the overall cumulative effect across the 21-day lag was also significant (RR = 1.94; 95% CI: 1.47, 2.57). Extreme precipitation has a seasonal effect on gastrointestinal health outcomes in Toronto city, suggesting varying levels of enteric pathogen exposures through drinking water or other environmental pathway during different seasons.
Crystallization processes of the illite-smectite (I-S) mixed-layer mineral series during alteration of felsic vitric materials in volcaniclastic sediments through two drill holes (IT-2 and IT-8) near the Kakkonda active geothermal system, Japan, were examined by optical microscopy, scanning and transmission electron microscopy (SEM and TEM), electron microprobe analysis, X-ray diffraction (XRD), and oxygen isotope analysis. Temperatures measured through the drill holes increased nearly linearly with depth up to 317°C at the bottom (1700 m) of IT-8. Homogenization temperature measurements of fluid inclusions indicated that the alteration occurred at temperatures similar to the present temperatures. In selected volcaniclastic rocks, excluding andesitic rocks and black shales, clay minerals occurred as glass replacements and pore fillings as seen under SEM and optical microscopy, and exhibited predominantly euhedral hexagonal and elongated forms under TEM, implying that they precipitated in situ through hydrolytic reactions of glass and fluid. Based on XRD examination, I-S minerals showed a sigmoidal variation in illite layer percentage (%I) in the range of ∼150 to 220°C and R0 I-S minerals with intermediate %I between 20 and 40% rarely occurred (where R is the Reichweite parameter). The chemical composition also showed a specific variation with depth. Intermediate clays including smectite and I-S minerals are enriched in Al compared to those reported previously from hydrothermal alteration of almost equivalent parent rocks. The oxygen isotope data indicated that the reacting solution was percolating groundwater in the shallow levels and with fossil seawater in the deeper levels. Furthermore, calculating the fluid/rock (W/R) ratio from the isotope variations revealed that the alteration occurred at a nearly constant W/R ratio condition irrespective of %I. Consequently, the observed specific variations in structure and chemical composition of I-S minerals reflect the compositional variations of fluid participating in the crystallization at given temperatures under the conditions of a given original rock and constant W/R ratio. High pH and Na-rich solutions generated by progressive hydrolytic reactions between felsic glass and groundwater favored the precipitation of Al-rich smectite up to ∼150°C and was followed by precipitation of an aluminous R1 I-S mineral with few intermediate R0 I-S minerals at higher temperatures. The crystallization obeys Ostwald’s step rule behavior of smectite illitization processes under a high geothermal gradient.
Chapter 6 outlines the range of methods used to isolate, purify and analyse nucleic acids. Methods to quantify DNA and RNA, and labelling of nucleic acids using radioactive and fluorographic precursors and a range of enzymatic methods, are described. The use of gel electrophoresis to separate DNA fragments is discussed. The principles of first-generation DNA sequencing are outlined, and the Sanger dideoxy method described for manual and automated methods. Next-generation methods for DNA sequencing are covered, to illustrate the range of advanced techniques that have enabled large-scale genome sequencing to become a routine laboratory procedure that is both rapid and cost-effective. Techniques for massively parallel and single-molecule real-time sequencing are described.
This chapter delves into the science of forests and streamflow. The amount of water that runs off the land into a stream is known as water yield. It is the water available for human uses. Evapotranspiration is a loss of water that reduces streamflow. Forests increase annual evapotranspiration and reduce annual streamflow compared with grasslands and other types of vegetation. The science, however, is not precise and our understanding is more qualitative than quantitative. Water yield and the climate services of forests represent conflicting demands for water. Forests cool the surface climate through evapotranspiration and remove carbon dioxide from the atmosphere during growth, but in doing so they consume water and reduce water yield for human usage. Consideration of spatial scale further muddies the policy implications because any precipitation benefits of forests occur at large spatial scales covering vast regions of land or entire continents, while the water cost of forests is felt at the scale of the watersheds that supply towns and cities.
This chapter considers what we know about climate in ancient Greece and how this structures our thinking. The issue of very different local environments and interannual variation is observed, both its challenges but also the potential for exploitation. The question of whether and when climate can be related to history is then discussed –the case of 541 CE and the plague under Justinian is considered as an example of what we do and do not know – and some of the main climate proxy evidence available for ancient Greece are briefly reviewed. The Greek to Roman period is mainly notable for a relatively benign and stable climate regime over a number of centuries.
The 4.2 ka event is widely presumed to be a globally widespread aridity event and has been linked to several episodes of societal changes across the globe. Whether this climate event impacted the cultural development in south-central China remains uncertain due to a lack of regional paleorainfall records. We present here stalagmite stable carbon isotope and trace element–based reconstruction of hydroclimatic conditions from south-central China. Our data reveal a sub–millennial scale (~5.6 to 4.3 ka) drying trend in the region followed by a gradual transition to wetter conditions during the 4.2 ka event (4.3–3.9 ka). Together with the existing archaeological evidence, our data suggest that the drier climate before 4.3 ka may have promoted the Shijiahe culture, while the pluvial conditions during the 4.2 ka event may have adversely affected its settlements in low-lying areas. While military conflicts with the Wangwan III culture may have accelerated the collapse of Shijiahe culture, we suggest that the joint effects of climate and the region's topography also played important causal roles in its demise.
We use PRISM climatic data (1981–2010) and Landsat images (2012–2013) to establish an empirical relationship linking annual temperature and precipitation to the equilibrium line altitude (ELA) of glaciers in the Sierra Nevada (36–41°N, California, USA). For this, we determined the present-day ELAs of 57 glaciers and the local 0°C isotherms elevation Iso0, averaged over the 1981–2010 period. The difference, for each glacier, is Y, the normalized snowline altitude (Y = ELA – Iso0). We then empirically calibrated a logarithmic relationship between this normalized snowline altitude and mean annual precipitation using data from partially covered glaciers. Our calibration is statistically distinct from that previously established for the tropical and midlatitude Andes (Fox and Bloom [1994], Journal of Geography (Chigaku Zasshi), 103, 867–885; Condom et al. [2007], Global and Planetary Change, 59, 189–202). This new relationship for North America is an easy-to-use tool to permit paleoclimatic reconstructions from paleo-ELAs. For a specific paleoglacial site, paleotemperature can be computed knowing the paleoprecipitation range, and vice versa. We also performed a test showing that, if precipitation is well known, the uncertainty associated with paleotemperature is about 1°C (1σ).