We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The objectives of this experiment were to determine the digestible indispensable amino acid score (DIAAS) for eggs cooked in different forms and in traditional egg-bread or egg-hash brown combinations, and to test the hypothesis that DIAAS in eggs is greater than in breads or potatoes. Nine ileal cannulated gilts (average initial body weight: 51.1 ± 6.0 kg) were allotted to a 9 × 6 Youden square design with nine diets and six 7-day periods. Fried egg, boiled egg, scrambled egg, English muffin, Texas toast, and hash brown were included in the experiment. Six diets each contained one source of protein and three diets were combinations of fried eggs and English muffin, boiled eggs and Texas toast, or scrambled egg and hash brown. A nitrogen-free diet was also used and fed to all pigs in one period. The standardised ileal digestibility (SID) of crude protein (CP) and amino acids (AA) was calculated, and DIAAS was calculated for the individual ingredient and combined meals for children between 6 and 36 months and individuals older than 3 years. For both age groups, all cooked eggs had greater (P < 0.001) DIAAS compared with the other foods, and hash brown had greater (P < 0.001) DIAAS than both breads. All combined meals had DIAAS greater than 75 and there were no differences between measured and predicted DIAAS for the combined meals. In conclusion, eggs have ‘excellent’ protein quality for individuals older than 6 months and can compensate for the lower protein quality in plant-based foods, and DIAAS obtained from individual ingredients are additive in mixed meals.
The increasing demand for food and especially proteins leads to the search for alternative protein sources. Meat co-products, which are available but little used in human food, provide a potential solution to this challenge. The present study aimed to evaluate the nutritional quality of two beef protein ingredients (greasy greaves recovered proteins (GGRP) and water recovered proteins (WRP)), both co-products of the fat rendering process. Their true ileal digestibility (TID), digestible indispensable amino acid score (DIAAS) and kinetics of plasma amino acids (AA) were measured in ten growing pigs, each fed the two co-products and a protein-free diet. Titanium dioxide was used as an indigestible marker. Digesta samples were collected for 9 h after meal ingestion, and blood samples were collected at ten time points during the same period. Total nitrogen (N) and AA contents were determined. Data were statistically analysed using linear mixed models. The TID of total N was not different between WRP and GGRP (81–84 %, P > 0·05). The first-limiting AA was Trp for both ingredients, with a DIAAS much higher for GGRP than for WRP (74 and 10 % for adults, respectively; P < 0·001). Postprandial plasma AA concentration peaked earlier for WRP (3 h) than for GGRP (5 h). Plasma concentrations of total and essential AA were higher (P < 0·001) with GGRP diet than WRP diet. Overall, GGRP has a nutritional quality suitable to meet the needs of adults for AA, while WRP needs to be supplemented with other protein sources to fulfil the dietary requirements.
Postprandially, amino acids and di/tripeptides are thought to be primarily absorbed in the proximal small intestine. However, there have been no in vivo demonstrations of regional differences in amino acid transport dynamics between the proximal and distal small intestines. We monitored plasma amino acid responses in the jejunal and ileal mesenteric veins of rats after oral administration of a diet or an amino acid mixture (Expt 1) and in the portal vein after direct administration of the amino acid mixture into the lumen of the jejunum or ileum (Expt 2). In Expt 1, the total and some amino acid concentrations in the jejunal mesenteric vein were slightly higher than those in the ileal mesenteric vein after oral administration of the amino acid mixture, suggesting that the ileum actively transports luminal amino acids to the basolateral side, comparable to the jejunum. In Expt 2, portal amino acid concentrations were elevated to a greater extent after direct administration of the amino acid mixture into the ileal lumen than into the jejunal lumen. These results demonstrate regional differences in amino acid transport dynamics in vivo and suggest that the ileum has a higher capacity for transporting amino acids than the jejunum. Our findings highlight the importance of the ileum in postprandial amino acid absorption and metabolism.
Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d post-weaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0–d7, d0–d14, d0–d21 and d0–d28 (P ≤ 0·01). From d0–d7 increasing CAM linearly decreased feed intake (P = 0·04) and increased linearly the feed to gain (P = 0·004). CAM increased linearly the liver weight (P < 0·0001) and affected the cadaverine (P < 0·001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0·05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.
As a consequence of treatments with glycine solutions, glycine molecules enter the interlayer of both Ca- and Cd-rich montmorillonite. Measurements of d value suggest that at low glycine concentration (0.01 and 0.1 M glycine solutions) a “flat” arrangement of the glycine molecules occurs in the interlayer. In contrast, intercalation of more than one monolayer of glycine molecules occurs for the montmorillonite treated with a higher concentration of glycine (1 M glycine solution).
Interlayer complexation of glycine occurs only for the Cd-rich form of montmorillonite, whereas no complexation is observed for Ca-rich montmorillonite. Both nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) results suggest that the adsorbed glycine, which fully protonates in the interlayer of montmorillonite to give the GlyH2− species, interacts with the interlayer Cd2+ to form the CdGlyx complex mainly through the carboxylate group. The interlayer cadmium, present as both Cd2+ and CdCl−, is complexed by the ligand glycine. In contrast, the cadmium adsorbed on the external surfaces of montmorillonite does not interact with the ligand. Complexation of CdCl+ only occurs for large amounts of adsorption of glycine (e.g., for samples treated with 1 M glycine solution).
Whole-body tissue protein turnover is regulated, in part, by the postprandial rise in plasma amino acid concentrations, although minimal data exist on the amino acid response following non-animal-derived protein consumption. We hypothesised that the ingestion of novel plant- and algae-derived dietary protein sources would elicit divergent plasma amino acid responses when compared with vegan- and animal-derived control proteins. Twelve healthy young (male (m)/female (f): 6/6; age: 22 ± 1 years) and 10 healthy older (m/f: 5/5; age: 69 ± 2 years) adults participated in a randomised, double-blind, cross-over trial. During each visit, volunteers consumed 30 g of protein from milk, mycoprotein, pea, lupin, spirulina or chlorella. Repeated arterialised venous blood samples were collected at baseline and over a 5-h postprandial period to assess circulating amino acid, glucose and insulin concentrations. Protein ingestion increased plasma total and essential amino acid concentrations (P < 0·001), to differing degrees between sources (P < 0·001), and the increase was further modulated by age (P < 0·001). Postprandial maximal plasma total and essential amino acid concentrations were highest for pea (2828 ± 106 and 1480 ± 51 µmol·l−1) and spirulina (2809 ± 99 and 1455 ± 49 µmol·l−1) and lowest for chlorella (2053 ± 83 and 983 ± 35 µmol·l−1) (P < 0·001), but were not affected by age (P > 0·05). Postprandial total and essential amino acid availabilities were highest for pea, spirulina and mycoprotein and lowest for chlorella (all P < 0·05), but no effect of age was observed (P > 0·05). The ingestion of a variety of novel non-animal-derived dietary protein sources elicits divergent plasma amino acid responses, which are further modulated by age.
Amino acids are ubiquitous in the Earth’s surface environments as reactive biological molecules produced by every living thing including bacteria. To evaluate the effects of amino acids on mineral dissolution and to reveal the mechanism by which they interact with the mineral surface, we performed dissolution experiments of X-ray amorphous silica in solution containing 0.1 mmol Na with 10.0 mmol amino acids such as cysteine, asparagine, serine, tryptophan, alanine, threonine, histidine, lysine and arginine in near-neutral solutions. Dissolution experiments in solutions of 0.1, 1.0 and 10.0 mmol NaCl without amino acids were also conducted as amino acid-free controls. The results of this study indicate that basic amino acids such as histidine, lysine and arginine can interact more strongly with the negatively charged surface of amorphous silica than other non-basic amino acids due to their greater dissociation, thus forming cationic species. This electrostatical interaction enhanced dissolution rates of amorphous silica by approximately one order of magnitude compared with amino acid-free controls. In contrast, no significant effect on the dissolution rates of amorphous silica was observed in solutions containing cysteine, asparagine, serine, tryptophan, alanine and threonine because of lesser interaction with the surface of amorphous silica.
Aflatoxins in contaminated corn do not degrade in corn fermentation solution (CFS) during biofuel production; rather, they are enriched in the co-product, dried distillers grain. Aflatoxin B1 (AfB1) is the most toxic form of all aflatoxins. Removing AfB1 from CFS is desirable to minimize its toxicity to animals. Smectites can adsorb AfB1 from aqueous solutions and, therefore, inactivate the toxin, but proteins in CFS inhibit the adsorption of AfB1 by smectites. The current study aimed to minimize the interference by CFS in adsorption of AfB1 on smectite by modifying a calcium-smectite (Ca-3MS) with a small nutritive organic compound, e.g. carnitine, choline, arginine, histidine, or tryptophan. The organo-smectites were characterized by X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy, and adsorption of AfB1 in CFS by these composites was examined. Various degrees of intercalation of the organic nutrients into the smectites were observed with XRD and FTIR. After immersing the smectite and organo-smectites in the CFS, the d001 values of Ca-3MS expanded to ~1.82 nm due to protein interaction, but the organo-smectites were confined to ~1.39 nm, which indicated that the protein had limited access to the organo-smectite interlayers. The IR bands at ~1652, 1544, 1538, and 1454 cm–1 from the organo-smectites revealed, however, that complete protein inhibition was not achieved. The organo-smectites were capable of adsorbing AfB1 in simple aqueous solution with maximal adsorption capacity up to 0.55 mol kg–1. Significantly greater (p ≤ 0.05) AfB1 adsorption was achieved by choline- and carnitine-modified smectites compared with the original Ca-3MS in the presence of competing protein (pepsin) in simple aqueous solution. In real CFS, both AfB1 adsorption capacities (Qmax) and affinities (K) by all organo-smectites were greater (Qmax = up to 0.45 mol kg–1 and K = up to 0.165 μM–1) than those by Ca-3MS (Qmax = 0.22 mol kg–1 and K = 0.031 μM–1). The study suggested that using smectites modified with an organic nutritive compound could be an effective, economical, and safe strategy for removing mycotoxins, including aflatoxins, during biofuel production.
Amino acids are present in various geochemical environments and they interact with mineral surfaces. To evaluate the effects of amino acids on mineral dissolution at pH conditions less than their isoelectric points (pI), dissolution experiments of X-ray amorphous silica in solutions containing 10.0 mmol/L of various amino acids (cysteine, asparagine, serine, tryptophan, alanine, threonine, histidine, lysine, and arginine) at pH 4 were performed. The results confirmed that basic amino acids (histidine, lysine, and arginine) produce an 8- to 8.5-fold enhancement of the rate of dissolution of amorphous silica compared with an amino acid-free control. Neutral amino acids (cysteine, asparagine, serine, tryptophan, alanine, and threonine) enhanced rates of dissolution by a factor of ∼3 to 3.5. The rate-enhancement effects of amino acids are controlled by concentrations of the amino acid’s cationic species which interact with the negatively charged >SiO− sites at the surface of the amorphous silica.
This study evaluated the importance of a correction for amino acids (AA) released into the hindgut on a measure of AA absorption kinetics and tested whether AA absorption kinetics are related to the extent of AA absorption using the growing pig as a model for humans. Thirty-six nine-week-old pigs (22·3 kg) received a diet containing whey protein as the sole protein source for 8 d. Pigs received their last meal containing the indigestible marker titanium dioxide before being euthanised at 1, 2, 3, 4, 6 and 12 h post-feeding. The entire content of each gastrointestinal tract (GIT) region was collected to determine AA released into the hindgut, and the kinetics and extent of AA absorption (uncorrected and corrected for AA entering the hindgut). Amounts of AA released into the hindgut increased over time (e.g. 33 and 180 mg of Glu for 4 and 6 h post-feeding). The corrected apparent amount of each AA absorbed from the GIT lumen after 4 h post-feeding was generally lower (P ≤ 0·05) than the uncorrected counterpart. Differences in both the kinetics and extent of AA absorption were observed across AA. For example, the time to reach half of the apparent AA absorption (T50) was 1·5 and 3·4 h for Met and Arg, respectively, whereas their extent of apparent absorption was 93 and 73 %. Negative correlations between parameters related to kinetics and the extent of apparent absorption were observed (e.g. for T50 r = −0·81; P < 0·001). The kinetics of AA absorption is related to the extent of AA absorption.
This review explores the evolution of dietary protein intake requirements and recommendations, with a focus on skeletal muscle remodelling to support healthy ageing based on presentations at the 2023 Nutrition Society summer conference. In this review, we describe the role of dietary protein for metabolic health and ageing muscle, explain the origins of protein and amino acid (AA) requirements and discuss current recommendations for dietary protein intake, which currently sits at about 0⋅8 g/kg/d. We also critique existing (e.g. nitrogen balance) and contemporary (e.g. indicator AA oxidation) methods to determine protein/AA intake requirements and suggest that existing methods may underestimate requirements, with more contemporary assessments indicating protein recommendations may need to be increased to >1⋅0 g/kg/d. One example of evolution in dietary protein guidance is the transition from protein requirements to recommendations. Hence, we discuss the refinement of protein/AA requirements for skeletal muscle maintenance with advanced age beyond simply the dose (e.g. source, type, quality, timing, pattern, nutrient co-ingestion) and explore the efficacy and sustainability of alternative protein sources beyond animal-based proteins to facilitate skeletal muscle remodelling in older age. We conclude that, whilst a growing body of research has demonstrated that animal-free protein sources can effectively stimulate and support muscle remodelling in a manner that is comparable to animal-based proteins, food systems need to sustainably provide a diversity of both plant and animal source foods, not least for their protein content but other vital nutrients. Finally, we propose some priority research directions for the field of protein nutrition and healthy ageing.
Reducing dietary crude protein (CP) concentration while maintaining adequate amino acid (AA) supply by free AA inclusion can contribute to attenuate the negative environmental effects of animal farming. This study investigated upper limits of dietary free AA inclusions without undesirable effects including the dependence on asparagine (Asn) and glutamine (Gln) supply. Ten broilers were allocated to sixty-three metabolism units each and offered nine experimental diets from day (d) 7–21 (n 7). One diet (167 g CP/kg) contained 80 g soya protein isolate (SPI)/kg. In the other diets, 25, 50, 75 and 100 % of the digestible AA from SPI were substituted with free AA. Digestible Asn+aspartic acid (Asp) and Gln+glutamic acid (Glu) were substituted with Asp/Glu or 50/50 mixes of Asp/Asn and Glu/Gln, respectively. Total excreta were collected from d 11–14 and from d 18–21. Growth and nitrogen accretion were unaffected by 25 and 50 % substitution without and with free Asn/Gln, respectively, but decreased at higher substitution (P ≤ 0·024). Circulating concentrations of Asp, Glu and Gln were unaffected by treatment, while Asn decreased at substitution higher than 50 % when Asn/Gln were not provided (P ≤ 0·005). Blood gas analysis on d 21 indicated a compensated metabolic acidosis at substitution higher than 50 and 75 % without and with free Asn/Gln, respectively (P ≤ 0·017). Results suggest that adding Asn/Gln increased an upper limit for proportion of dietary free AA from 10 to 19 % of dietary CP and enabled higher free AA inclusion without affecting the acid–base balance.
The transition towards more plant-based diets may pose risks for bone health such as low vitamin D and Ca intakes. Findings for the contribution of animal and plant proteins and their amino acids (AA) to bone health are contradictory. This 6-week clinical trial aimed to investigate whether partial replacement of red and processed meat (RPM) with non-soya legumes affects AA intakes and bone turnover and mineral metabolism in 102 healthy 20–65-year-old men. Participants were randomly assigned to diet groups controlled for RPM and legume intake (designed total protein intake (TPI) 18 E%): the meat group consumed 760 g RPM per week (25 % TPI) and the legume group consumed non-soya legume-based products (20 % TPI) and 200 g RPM per week, the upper limit of the Planetary Health Diet (5 % TPI). No differences in bone (bone-specific alkaline phosphatase; tartrate-resistant acid phosphatase 5b) or mineral metabolism (25-hydroxyvitamin D; parathyroid hormone; fibroblast growth factor 23; phosphate and Ca) markers or Ca and vitamin D intakes were observed between the groups (P > 0·05). Methionine and histidine intakes were higher in the meat group (P ≤ 0·042), whereas the legume group had higher intakes of arginine, asparagine and phenylalanine (P ≤ 0·013). Mean essential AA intakes in both groups met the requirements. Increasing the proportion of non-soya legumes by reducing the amount of RPM in the diet for 6 weeks did not compromise bone turnover and provided on average adequate amounts of AA in healthy men, indicating that this ecologically sustainable dietary change is safe and relatively easy to implement.
Ever increasing global population necessitates the need to increase availability of affordable foods with high nutritional quality. Chickpea being the second most important grain legume cultivated worldwide has the great potential to alleviate problems of protein malnutrition and hidden hunger. The objective of the present investigation was to characterize a diverse set of 402 germplasm comprising of more than 100 commercial cultivars widely cultivated and utilized by breeders for grain protein in two contrasting environments to explore the magnitude of natural genotypic diversity present in the cultivated chickpea and the scope for enhancing it and its quality through breeding. The cultivars containing more than 25 to 30.44% grain protein have been found in the study and large scale production of such protein rich cultivars is expected to increase availability as well as consumption of high quality chickpea necessary to overcome all forms of malnutrition. Trait specific germplasm containing grain protein up to 33.56% are also identified for their further utilization as potential donors in the chickpea improvement programme. The amino acid profiling of selected high and low protein containing genotypes showed considerably greater average amino acid score for all the essential amino acids than the WHO recommended requirement values and is comparable to those of the ‘complete protein’ sources of food suggesting that chickpea deserves to be considered as a ‘complete protein’ source.
Dietary fiber (DF) is receiving increasing attention, and its importance in pig nutrition is now acknowledged. Although DF for pigs was frowned upon for a long time because of reductions in energy intake and digestibility of other nutrients, it has become clear that feeding DF to pigs can affect their well-being and health. This review aims to summarize the state of knowledge of studies on DF in pigs, with an emphasis on the underlying mode of action, by considering research using DF in sows as well as suckling and weaned piglets, and fattening pigs. These studies indicate that DF can benefit the digestive tracts and the health of pigs, if certain conditions or restrictions are considered, such as concentration in the feed and fermentability. Besides the chemical composition and the impact on energy and nutrient digestibility, it is also necessary to evaluate the possible physical and physiologic effects on intestinal function and intestinal microbiota, to better understand the relation of DF to animal health and welfare. Future research should be designed to provide a better mechanistic understanding of the physiologic effects of DF in pigs.
Methionine (MET) supplementation is a current strategy to achieve shrimp requirement. Notwithstanding, the efficiency of the precisely formulated feeds can be diminished since shrimps are slow eaters and masticate feed externally that results in nutrient leaching. In this regard, a methionine dipeptide (DL-methionyl DL-methionine) benefits the feed industry by reducing MET water solubility while increasing its bioavailability. Therefore, the effects of feeding whiteleg shrimp (Penaeus vannamei) with increasing levels of methionine dipeptide were evaluated on zootechnical performance and methionine-, immune- and antioxidant-related pathways. A 74 d growth trial was conducted by feeding a control diet and four diets supplemented with AQUAVI® Met-Met at 0·08, 0·12, 0·24 and 0·32% of DM. Diet digestibility, body amino acids (AA) composition and nitrogen metabolites, metabolic enzymes, oxidative status and gene expression were evaluated. It can be concluded that graded dietary increase of methionine dipeptide up to 0·24 % for 74 d translated in significant gains on the growth performance, feed efficiency, nutrient and nitrogen gain and shrimp survival. Moreover, it was showed that Met-Met dietary spare leads to an improvement of free-AA pool and nitrogen metabolites concentration and reduces the signs of oxidative stress. Finally, in a closer look to the MET-related pathways passive to be altered by Met-Met spare, a clear modulation of the described antioxidant and cell proliferation routes was detected.
Nutrients can impact and regulate cellular metabolism and cell function which is particularly important for the activation and function of diverse immune subsets. Among the critical nutrients for immune cell function and fate, glutamine is possibly the most widely recognised immunonutrient, playing key roles in TCA cycle, heat shock protein responses and antioxidant systems. In addition, glutamine is also involved with inter-organ ammonia transport, and this is particularly important for not only immune cells, but also to the brain, especially in catabolic situations such as critical care and extenuating exercise. The well characterised fall in blood glutamine availability has been the main reason for studies to investigate the possible effects of glutamine replacement via supplementation but many of the results are in poor agreement. At the same time, a range of complex pathways involved in glutamine metabolism have been revealed via supplementation studies. This article will briefly review the function of glutamine in the immune system, with emphasis on metabolic mechanisms, and the emerging role of glutamine in the brain glutamate/gamma-amino butyric acid cycle. In addition, relevant aspects of glutamine supplementation are discussed.
Determination of indispensable amino acid (IAA) requirements necessitates a range of intakes of the test IAA and monitoring of the physiological response. Short-term methods are the most feasible for studying multiple intake levels in the same individual. Carbon oxidation methods measure the excretion of 13CO2 in breath from a labelled amino acid (AA) in response to varying intakes of the test AA following a period of adaptation. However, the length of adaptation to each AA intake level has been a source of debate and disagreement among researchers. The assertion of the minimally invasive indicator amino acid oxidation (IAAO) technique is that IAA requirements can be estimated after only a few hours (8 h) of adaptation to each test AA intake, suggesting that adaptation occurs rapidly in response to dietary adjustments. On the contrary, the assertion of most other techniques is that 6–7 d of adaptation is required when determining IAA needs. It has even been argued that a minimum of two weeks is needed to achieve complete adaptation. This review explores evidence regarding AA oxidation methods and whether long periods of adaptation to test IAA levels are necessary when estimating IAA requirements. It was found that the consumption of experimental diets containing lower test IAA intake for greater than 7 d violates the terms of a successful adaptive response. While there is some evidence that short-term 8 h IAAO is not different among different test amino acid intakes up to 7 d, it is unclear whether it impacts assessment of IAA requirements.
Previously, we provided an evidence that l-Leucine supplementation facilitates growth performance in suckling piglets with normal birth weight. However, it remains hitherto obscure weather breast-fed piglets displaying intra-uterine growth restriction (IUGR) show a similar effect in response to l-Leucine provision. In this study, 7-d-old sow-reared IUGR piglets were orally administrated with l-Leucine (0, 0·7, 1·4 or 2·1 g/kg BW) twice daily for 2 weeks. Increasing leucine levels hampered the growth performance of suckling IUGR piglets. The average daily gain of IUGR piglets was significantly reduced in 1·4 g/kg BW and 2·1 g/kg BW l-Leucine supplementation groups (P < 0·05). Except for ornithine and glutamine, the plasma concentrations of other amino acids were abated as l-Leucine levels increased (P < 0·05). Leucine supplementation led to reduction in the levels of urea, blood ammonia, blood glucose, TAG and total cholesterol, as well as an elevation in the level of LDL-cholesterol in suckling IUGR piglets (P < 0·05). In addition, 1·4 g/kg BW of l-Leucine enhanced the mRNA expression of ATB0,+, whereas decreased the mRNA abundances of CAT1, y + LAT1, ASCT2 and b0,+AT in the jejunum (P < 0·05). Concomitantly, the jejunum of IUGR piglets in l-Leucine group contains more ATB0,+ and less SNAT2 protein than in the control (P < 0·05). Collectively, l-Leucine supplementation impairs growth performance in breast-fed IUGR piglets, which may be associated with depressed nutritional conditions and alterations in the uptake of amino acids and the expression of amino acid transporters in the small intestine.
Microbiological activities can be detected in various extreme environments on Earth, which suggest that extraterrestrial environments, such as on Mars, could host life. There have been proposed a number of biomarkers to detect extant life mostly based on specific molecules. Because terrestrial organisms have catalytic proteins (enzymes), enzymatic activity may also be a good indicator to evaluate biological activities in extreme environments. Phosphatases are essential for all terrestrial organisms because phosphate esters are ubiquitously used in genetic molecules (DNA/RNA) and membranes. In this study, we evaluated microbial activity in soils of the Atacama Desert, Chile, by analysing several biomarkers, including phosphatase activity. Phosphatases extracted with Tris buffer were assayed fluorometrically using 4-methylumbelliferyl phosphate as a substrate. The horizontal distribution of phosphatase activity and other parameters in soils from the Atacama Desert showed that phosphatase activity was positively correlated with amino acid concentration and colony-forming units and negatively correlated with precipitation amount. We found consistent that biochemical indicators including phosphatase significantly decreased in the extreme hyper-arid zone where rainfall of <25 mm year−1. The results were compared with phosphatase activities detected in extreme environments, such as submarine hydrothermal systems and Antarctic soils, as well as soils from ordinary environments. Overall, our results suggested that phosphatase activity could be a good indicator for evaluating biological activities in extreme environments.