The effects of shade on the growth and photosynthetic capacity of the exotic noxious weed itchgrass (Rottboellia exaltata L. f.) were determined under controlled environment conditions. The plants were grown at day/night temperatures of 29/23 C under 100, 60, 25, and 2% sunlight in a climate-controlled greenhouse. Mathematical growth analysis techniques were used to evaluate the effects of shading on dry matter production and leaf area production. Infrared gas analysis and diffusion porometry techniques were used to evaluate the effects of shading on photosynthesis and stomatal resistance. Shading markedly reduced dry matter production. At 40 days after planting, plants grown in 2, 25, and 60% sunlight had 0.3, 16, and 55%, respectively, of the dry weight of the plants grown at 100% sunlight. Leaf area production was less severely retarded by shading; the plants grown at 2, 25, and 60% sunlight had, respectively, 1.7, 42, and 99% of the leaf area of the plants grown at 100% sunlight. Ambient photosynthetic rates of recently expanded, single, fully exposed leaves were 22.5, 51.6, and 65.5 mg CO2 dm-2h-1 in the 25, 60, and 100% sunlight treatments, respectively. Photosynthetic rates at saturating irradiance did not differ significantly in plants grown at 25, 60, or 100% sunlight and ranged from 76.4 to 78.0 mg CO2 dm-2h-1. Stomatal resistances, ranging from 6.0 to 7.5 s cm-1, also did not differ significantly among these plants. In terms of dry matter production, itchgrass is a shade-intolerant plant. However, even when grown in shade, itchgrass maintains the capacity for high photosynthetic rates and high growth rates when subsequently exposed to high irradiance. These characteristics help explain its competitiveness with crop species.