We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The physiologic and hormonal stresses that occur during pregnancy and labor have the potential to worsen existing respiratory disease and can pose unique challenges in management for the obstetrician and obstetric anesthesiologist. Cases of respiratory disease in pregnancy require specific planning and management to optimize maternal and fetal outcome. This chapter discusses rare respiratory disorders that the obstetric anesthesiologist may encounter in practice: acute respiratory distress syndrome, cystic fibrosis, pneumothorax, status asthmaticus, thromboembolic disease, mediastinal mass, congenital central hypoventilation syndrome, pulmonary lymphangioleiomyomatosis, restrictive and interstitial lung disease, transfusion related acute lung injury, transfusion-associated circulatory overload and lung transplantation. The aim is to present relevant discussion in order provide the anesthesiologist with some background and evidence to support her/his decision-making when encountering these rare and challenging cases.
Airway management is one of the core fundamental skills of the emergency medicine and critical care physician. Airway management is time-critical and can literally mean the difference between life and death. Airway management encompasses the overlapping management of oxygenation, ventilation and airway protection.
Asthma is a chronic inflammatory disorder of the airways characterized by increased sensitivity to irritating stimuli. Inflammatory episodes obstruct airflow due to bronchospasm, airway edema, bronchial smooth muscle contraction, and mucus plugs, leading to recurrent episodes of wheezing, shortness of breath, chest tightness, and coughing. The inflammatory episodes also lead to lung hyperinflation, increased work of breathing, and ventilation–perfusion mismatch. A hallmark of asthma is that the inflammatory episodes are reversible.
Chronic obstructive pulmonary disease (COPD) is a respiratory disease characterized by a limitation in airflow that is not fully reversible. It includes chronic bronchitis and emphysema. Smoking is the most common risk factor for COPD. However, exposures to biofuels, air pollution and other chemical irritants are common factors in certain areas of the world. It leads to alveolar damage, increased mucus production, air trapping, hyperinflation and airflow obstruction.
Mechanical ventilation is the utilization of positive pressure to ventilate a patient via an endotracheal tube or tracheostomy tube. Mechanical ventilation drastically alters normal respiratory physiology. We normally breathe by generating negative pressure in the thoracic cavity, while mechanical ventilation uses positive pressure to drive the flow of gas into the lungs.
The Fibrosis-4 (FIB-4) index, a simple index that includes age, liver enzymes, and platelet count has been studied as a tool to identify patients at a risk of requiring mechanical ventilation due to its high negative predictive value. It is unknown if FIB-4 remains useful to predict the severity of respiratory disease requiring mechanical ventilation amongst new Coronavirus disease 2019 (COVID-19) variants and whether a relationship also exists between FIB-4 and 30-day mortality. The main objective was to determine if FIB-4 can predict mechanical ventilation requirements and 30-day mortality from COVID-19 across variants including Alpha, Delta, and Omicron.
Methods:
This was a population-based, retrospective cohort analysis of 232,364 hospitalized patients in the National COVID-19 Cohort Collaborative between the age of 18–90 who tested positive for COVID-19 between April 27, 2020 and June 25, 2022. The primary outcome was association between FIB-4 and need for mechanical ventilation. Secondary measures included the association of FIB-4 with 30-day mortality.
Results:
A FIB-4 > 2.67 had 1.8 times higher odds of requiring mechanical ventilation across all variants of COVID-19 (OR 1.81; 95% CI: [1.76, 1.86]). The area under the ROC curve showed high diagnostic accuracy with values ranging between 0.79 (Omicron wave) and 0.97 (delta wave). Increased FIB-4 was associated with 30-day mortality across the variates.
Conclusion:
The FIB-4 was consistently associated with both increased utilization of mechanical ventilation and 30-day mortality among COVID-19 patients across all waves in both adjusted and unadjusted models. This provides a simple tool for risk-stratification for front-line health care professionals.
The American Society of Parenteral and Enteral Nutrition recommends nutritional risk (NR) screening in critically ill patients with Nutritional Risk Screening – 2002 (NRS-2002) ≥ 3 as NR and ≥ 5 as high NR. The present study evaluated the predictive validity of different NRS-2002 cut-off points in intensive care unit (ICU). A prospective cohort study was conducted with adult patients who were screened using the NRS-2002. Hospital and ICU length of stay (LOS), hospital and ICU mortality, and ICU readmission were evaluated as outcomes. Logistic and Cox regression analyses were performed to evaluate the prognostic value of NRS-2002, and a receiver operating characteristic curve was constructed to determine the best cut-off point for NRS-2002. 374 patients (61·9 ± 14·3 years, 51·1 % males) were included in the study. Of these, 13·1 % were classified as without NR, 48·9 % and 38·0 % were classified as NR and high NR, respectively. An NRS-2002 score of ≥ 5 was associated with prolonged hospital LOS. The best cut-off point for NRS-2002 was a score ≥ 4, which was associated with prolonged hospital LOS (OR = 2·13; 95 % CI: 1·39, 3·28), ICU readmission (OR = 2·44; 95 % CI: 1·14, 5·22), ICU (HR = 2·91; 95 % CI: 1·47, 5·78) and hospital mortality (HR = 2·01; 95 % CI: 1·24, 3·25), but not with ICU prolonged LOS (P = 0·688). NRS-2002 ≥ 4 presented the most satisfactory predictive validity and should be considered in the ICU setting. Future studies should confirm the cut-off point and its validity in predicting nutrition therapy interaction with outcomes.
Post-extubation dysphagia in critically ill patients is known to affect about 18 per cent of mixed medical-surgical intensive care unit patients. This study investigated the incidence of post-extubation dysphagia in adult intensive care unit patients with coronavirus disease 2019.
Method
This study was a retrospective analysis of consecutive intensive care unit patients prospectively screened for dysphagia. Systematic screening of all extubated intensive care unit patients at our tertiary centre was performed using the Bernese intensive care unit dysphagia algorithm. The primary outcome measure was the incidence of post-extubation dysphagia.
Results
A total of 231 critically ill adult coronavirus disease 2019 positive patients were included, and 81 patients remained in the final analysis after exclusion criteria were applied (e.g. patients transferred). Dysphagia screening positivity was 25 of 81 (30.9 per cent), with 28.2 per cent (22 of 78) having confirmed dysphagia by specialist examination within 24 hours (n = 3 lost to follow up).
Conclusion
In this observational study, it was observed that the incidence of dysphagia in adult critically ill coronavirus disease 2019 patients was about 31 per cent (i.e. increased when compared with a historical pre-pandemic non-coronavirus disease 2019 intensive care unit cohort).
Portable oxygen concentrators (POCs) are medical devices that use physical means to separate oxygen from the atmosphere to produce concentrated, medical-grade gas. Providing oxygen to low-resources environments, such as austere locations, military combat zones, rural Emergency Medical Services (EMS), and during disasters, becomes expensive and logistically intensive. Recent advances in separation technology have promoted the development of POC systems ruggedized for austere use. This review provides a comprehensive summary of the available data regarding POCs in these challenge environments.
Methods:
PubMed, Google Scholar, and the Defense Technical Information Center were searched from inception to November 2021. Articles addressing the use of POCs in low-resource settings were selected. Three authors were independently involved in the search, review, and synthesis of the articles. Evidence was graded using Oxford Centre for Evidence-Based Medicine guidelines.
Results:
The initial search identified 349 articles, of which 40 articles were included in the review. A total of 724 study subjects were associated with the included articles. There were no Level I systematic reviews or randomized controlled trials.
Discussion:
Generally, POCs are a low-cost, light-weight tool that may fill gaps in austere, military, veterinary, EMS, and disaster medicine. They are cost-effective in low-resource areas, such as rural and high-altitude hospitals in developing nations, despite relatively high capital costs associated with initial equipment purchase. Implementation of POC in low-resource locations is limited primarily on access to electricity but can otherwise operate for thousands of hours without maintenance. They provide a unique advantage in combat operations as there is no risk of explosive if oxygen tanks are struck by high-velocity projectiles. Despite their deployment throughout the battlespace, there were no manuscripts identified during the review involving the efficacy of POCs for combat casualties or clinical outcomes in combat. Veterinary medicine and animal studies have provided the most robust data on the physiological effectiveness of POCs. The success of POCs during the coronavirus disease 2019 (COVID-19) pandemic highlights the potential for POCs during future mass-casualty events. There is emerging technology available that combines a larger oxygen concentrator with a compressor system capable of refilling small oxygen cylinders, which could transform the delivery of oxygen in austere environments if ruggedized and miniaturized. Future clinical research is needed to quantify the clinical efficacy of POCs in low-resource settings.
When is life-sustaining treatment not in the best interests of a minimally conscious child? This is an extremely difficult question that incites seemingly intractable debate. And yet, it is the question courts in England and Wales have set out to answer in disputes about appropriate medical treatment for children.
Today, trauma is known to be the third leading cause of death in most countries. Studies have demonstrated below-normal plasma levels of antioxidants in trauma patients. The present study aimed to assess the efficacy of Coenzyme Q10 (CoQ10) on oxidative stress, clinical outcomes and anthropometrical parameters in traumatic mechanical ventilated patients admitted to the intensive care unit. Patients were randomised to receive sublingual CoQ10 (400 mg/d) or placebo for 7 d. Primary and secondary outcomes were measured at the baseline and end of the study. We enrolled forty patients for this trial: twenty in the CoQ10 group and twenty in the placebo group. There was not any significant difference in the baseline variables (P > 0⋅05). At the end of the study, CoQ10 administration caused a considerable reduction in the Malondialdehyde (MDA) and Interleukin 6 (IL-6) concentrations (P < 0⋅001), Glasgow Coma Score (GCS; P = 0⋅02), ICU and hospital length of stay and mechanical ventilation (MV) duration (P < 0⋅001). We found that CoQ10 administration could increase Fat-Free Mass (P < 0⋅001) (FFM; P = 0⋅04), Skeletal Muscle Mass (SMM; P = 0⋅04) and Body Cell Mass (BCM) percent (P = 0⋅03). There was not any significant difference in other factors between the two groups (P > 0⋅05). CoQ10 administration has beneficial effects on patients with traumatic injury and has no side effects. However, since the possibility of the type II error was high, the outcomes on the duration of MV, ICU stay and hospital stay, and GCS may very well be false positives.
After congenital heart surgery, some patients may need long-term mechanical ventilation because of chronic respiratory failure. In this study, we analysed outcomes of the patients who need tracheostomy and home mechanical ventilation.
Methods:
Amongst 1343 patients who underwent congenital heart surgery between January, 2014 and June, 2018, 45 needed tracheostomy and HMV. The median age of these patients was 6.4 months (12 days–6.5 years). Nineteen patients underwent palliation while 26 patients underwent total repair. Post-operative diaphragm plication was performed in five patients (11%). Median duration of mechanical ventilation before tracheostomy was 32 days (8–154 days). The patients were followed up with their home ventilators in ward and at home. Mean follow-up time was 36.24 ± 11.61 months.
Results:
The median duration of ICU stay after tracheostomy was 27 days (range 2–93 days). Follow-up time in ward was median 30 days (2–156 days). A total of 12 patients (26.6%) were separated from the ventilator and underwent decannulation during hospital stay. Thirty-two patients (71.1%) were discharged home with home ventilator support. Of them, 15 patients (46.9%) were separated from the respiratory support in median of 6 weeks (1 week–11 months) and decannulations were performed. Total mortality was 31.1%. in which four patients are still HMV dependent. There was no significant difference for decannulation between total repair and palliation patients.
Conclusion:
HMV via tracheostomy is a useful option for the treatment of children who are dependent on long-term ventilation after congenital heart surgery although there are potential risks.
Prostaglandin E1 is used to maintain ductal patency in critical congenital heart disease (CHD). The standard starting dose of prostaglandin E1 is 0.05 µg/kg/minute. Lower doses are frequently used, but the efficacy and safety of a low-dose regimen of prostaglandin E1 has not been established.
Methods:
We investigated neonates with critical CHD who were started on prostaglandin E1 at 0.01 µg/kg/minute. We reviewed 154 consecutive patients who were separated into three anatomical groups: obstruction to systemic circulation, obstruction to pulmonary circulation, and inadequate mixing (d-transposition of the great arteries). Treatment failure rates and two commonly reported side effects, respiratory depression and seizure, were studied.
Results:
A total of 26 patients (17%) required a dose increase in prostaglandin E1. Patients with pulmonary obstruction were more likely to require higher doses than patients with systemic obstruction (15/49, 31% versus 9/88, 10%, p = 0.003). Twenty-eight per cent of patients developed respiratory depression and 8% of patients needed mechanical ventilation. Prematurity (<37 week gestation) was the primary risk factor for respiratory depression. No patient required dose escalation or tracheal intubation while on transport. No patient had a seizure attributed to prostaglandin E1.
Conclusions:
Prostaglandin E1 at an initial and maintenance dose of 0.01 µg/kg/minute was sufficient to maintain ductal patency in 83% of our cohort. The incidence of respiratory depression requiring mechanical ventilation was low and was mostly seen in premature infants. Starting low-dose prostaglandin E1 at 0.01 µg/kg/minute is a safe and effective therapy for critical CHD.
Tracheostomy for coronavirus disease 2019 pneumonitis patients requiring prolonged invasive mechanical ventilation remains a matter of debate. This study analysed the timing and outcomes of percutaneous tracheostomy, and reports our experience of a dedicated ENT–anaesthetics department led tracheostomy team.
Method
A prospective single-centre observational study was conducted of patients undergoing tracheostomy, who had been diagnosed with coronavirus disease 2019 pneumonitis, between 21st March and 20th May 2020.
Results
Eighty-one patients underwent tracheostomy after a median (interquartile range) of 16 (13–20) days of invasive mechanical ventilation. Median follow-up duration was 32 (23–40) days. Of patients, 86.7 per cent were successfully liberated from invasive mechanical ventilation in a median (interquartile range) of 12 (7–16) days. Moreover, 68.7 per cent were subsequently discharged from hospital. On univariate analysis, there was no difference in outcomes between early (before day 14) and late (day 14 or later) tracheostomy. The mortality rate was 8.6 per cent and no deaths were tracheostomy related.
Conclusion
Outcomes appear favourable when patients are carefully selected. Percutaneous tracheostomy performed via a multidisciplinary approach, with appropriate training, was safe and optimised healthcare resource utilisation.
Patients with respiratory failure are usually mechanically ventilated, mostly with fraction of inspired oxygen (FiO2) > 0.21. Minimizing FiO2 is increasingly an accepted standard. In underserved nations and disasters, salvageable patients requiring mechanical ventilation may outstrip oxygen supplies.
Study Objective:
The hypothesis of the present study was that mechanical ventilation with FiO2 = 0.21 is feasible. This assumption was tested in an Acute Respiratory Distress Syndrome (ARDS) model in pigs.
Methods:
Seventeen pigs were anesthetized, intubated, and mechanically ventilated with FiO2 = 0.4 and Positive End Expiratory Pressure (PEEP) of 5cmH2O. Acute Respiratory Distress Syndrome was induced by intravenous (IV) oleic acid (OA) infusion, and FiO2 was reduced to 0.21 after 45 minutes of stable moderate ARDS. If peripheral capillary oxygen saturation (SpO2) decreased below 80%, PEEP was increased gradually until maximum 20cmH2O, then inspiratory time elevated from one second to 1.4 seconds.
Results:
Animals developed moderate ARDS (mean partial pressure of oxygen [PaO2]/FiO2 = 162.8, peak and mean inspiratory pressures doubled, and lung compliance decreased). The SpO2 decreased to <80% rapidly after FiO2 was decreased to 0.21. In 14/17 animals, increasing PEEP sufficed to maintain SpO2 > 80%. Only in 3/17 animals, elevation of FiO2 to 0.25 after PEEP reached 20cmH2O was needed to maintain SpO2 > 80%. Animals remained hemodynamically stable until euthanasia one hour later.
Conclusions:
In a pig model of moderate ARDS, mechanical ventilation with room air was feasible in 14/17 animals by elevating PEEP. These results in animal model support the potential feasibility of lowering FiO2 to 0.21 in some ARDS patients. The present study was conceived to address the ethical and practical paradigm of mechanical ventilation in disasters and underserved areas, which assumes that oxygen is mandatory in respiratory failure and is therefore a rate-limiting factor in care capacity allocation. Further studies are needed before paradigm changes are considered.
The impact of mechanical ventilation on the daily costs of intensive care unit (ICU) care is largely unknown. We thus conducted a systematic search for studies measuring the daily costs of ICU stays for general populations of adults (age ≥18 years) and the added costs of mechanical ventilation. The relative increase in the daily costs was estimated using random effects meta regression. The results of the analyses were applied to a recent study calculating the excess length-of-stay associated with ICU-acquired (ventilator-associated) pneumonia, a major complication of mechanical ventilation. The search identified five eligible studies including a total of 54 766 patients and ~238 037 patient days in the ICU. Overall, mechanical ventilation was associated with a 25.8% (95% CI 4.7%–51.2%) increase in the daily costs of ICU care. A combination of these estimates with standardised unit costs results in approximate daily costs of a single ventilated ICU day of €1654 and €1580 in France and Germany, respectively. Mechanical ventilation is a major driver of ICU costs and should be taken into account when measuring the financial burden of adverse events in ICU settings.
Introduction: Risk-stratification of patients requiring endotracheal intubation and mechanical ventilation in the Emergency Department (ED) is necessary for informed discussions with patients regarding goals-of-care. Frailty is a clinical state characterized by reduced physiologic reserve, and resulting from accumulation of physiological stresses and comorbid disease. Frailty is increasingly being identified as an important independent predictor of outcome among critically ill patients. Our objective was to identify the impact of clinical frailty (defined by the Clinical Frailty Scale [CFS]) on in-hospital mortality and resource utilization of ED patients requiring endotracheal intubation and mechanical ventilation. Methods: We analyzed a prospectively collected registry (2011-2016) of patients requiring endotracheal intubation in the ED at two academic hospitals and six community hospitals. We included all patients ≥18 years of age, who survived to the point of ICU admission. All patient information, outcomes, and resource utilization were stored in the registry. CFS scores were obtained through chart abstraction by two blinded reviewers. The primary outcome, in-hospital mortality, was analyzed using a multivariable logistic regression model, controlling for confounding variables (including patient sex, comorbidities, and illness severity). We defined “frailty” as a CFS ≥ 5. Results: 4,622 patients were included. Mean age was 61.2 years (SD: 17.5), and 2,614 (56.6%) were male. Frailty was associated with increased risk of in-hospital mortality, as compared to those who were not frail (adjusted odds ratio [OR] 2.21 [1.98-2.51]). Frailty was also associated with higher likelihood of discharge to long-term care (adjusted OR 1.78 [1.56-2.01]) among patients initially from a home setting. Frail patients were more likely to fail extubation during their hospitalization (adjusted OR 1.81 [1.67-1.95]) and were more likely to require tracheostomy (adjusted OR 1.41 [1.34-1.49]). Conclusion: Presence of frailty among ED patients requiring endotracheal intubation and mechanical ventilation was associated with increased in-hospital mortality, discharge to long-term care, extubation failure, and tracheostomy. ED physicians should consider the impact of frailty on patient outcomes, and discuss associated prognosis with patients prior to intubation.
Critically ill patients frequently suffer from gastrointestinal dysfunction as the intestine is a vulnerable organ. In critically ill patients who require nutritional support, the current guidelines recommend the use of enteral nutrition within 24–48 h and advancing towards optimal nutritional goals over the next 48–72 h; however, this may be contraindicated in patients with acute gastrointestinal injury because overuse of the gut in the acute phase of critical illness may have an adverse effect on the prognosis. We propose that trophic feeding after 72 h, as a partial gut rest strategy, should be provided to critically ill patients during the acute phase of illness as an organ-protective strategy, especially for those with acute gastrointestinal injury.