We answer an open problem posed by Iarrobino, Hilbert scheme of points: Overview of last ten years. Proceedings of Symposia in Pure Mathematics, 46 (American Mathematical Society, Providence, RI, 1987), 297–320: Is there a component of the punctual Hilbert scheme [Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert', in Séminaire Bourbaki, 6 (Societe Mathematique de France, Paris, 1995), 221, 249–276]
$\operatorname {\mathrm {Hilb}}^d({\mathscr {O}}_{\mathbb {A}^n,p})$
with dimension less than
$(n-1)(d-1)$
? For each
$n\geq 4$
, we construct an infinite class of elementary components in
$\operatorname {\mathrm {Hilb}}^d(\mathbb {A}^n)$
producing such examples. Our techniques also allow us to construct an explicit example of a local Artinian ring [Iarrobino and Kanev, Power sums, Gorenstein algebras, and determinantal loci (Springer-Verlag, Berlin, 1999), 221–226] of the form
with trivial negative tangents, vanishing nonnegative obstruction space, and socle-dimension
$2$
.