A new philosophy for tailoring layer composites for damage resistance is developed, specifically for alumina-based ceramics. The underlying key to the approach is microstructural control in the adjacent layers, alternating a traditional homogeneous fine-grain alumina (layer A) for hardness and wear resistance with a heterogeneous alumina : calcium-hexaluminate composite (layer C) for toughness and crack dispersion, with strong bonding between the interlayers. Two trilayer sequences, ACA and CAC, are investigated. Hertzian indentation tests are used to demonstrate the capacity of the trilayers to absorb damage. In the constituent materials, the indentation responses are fundamentally different: ideally brittle in material A, with classical cone cracking outside the contact; quasi-plastic in material C, with distributed microdamage beneath the contact. In the ACA laminates, shallow cone cracks form in the outer A layer, together with a partial microdamage zone in the inner C layer. A feature of the cone cracking is that it is substantially shallower than in the bulk A specimens and does not penetrate to the underlayer, even when the applied load is increased. This indicates that the subsurface microdamage absorbs significant energy from the applied loads, and thereby “shields” the surface cone crack. Comparative tests on CAC laminates show a constrained microdamage zone in the outer C layer, with no cone crack, again indicating some kind of shielding. Importantly, interlayer delamination plays no role in either layer configuration; the mechanism of damage control is by crack suppression rather than by deflection. Implications for the design of synergistic microstructures for damage-resistant laminates are considered.