Three important polymers: polystyrene (PS), poly ether ether ketone (PEEK), and polyimide Kapton, were irradiated separately with 1 MeV He+, 1 MeV Ar+, and 1 MeV He+ followed by 1 MeV Ar+ sequentially, to a fluence of 3 × 1019 ions/m2 for each ion. The specimens were characterized for changes in surface hardness using a nanoindentation technique, and wear resistance using a reciprocating sliding wear apparatus with a steel ball counterface. Results indicated that while all polymers showed higher hardness values after ion irradiation, the dual irradiation resulted in the largest hardness increase, greater than for the single ion-irradiated specimens. Wear test results also indicated that the dual He+ + Ar+ irradiation resulted in the best improvement in wear resistance of the polymers. These improvements in properties are a consequence of cross-linking of the polymer material caused by the ion irradiation. Linear energy transfer considerations showed that the dual He+ + Ar+ implantation was better because it combined a deeper implant, in the form of He, along with Ar irradiation which resulted in a shallower but more highly cross-linked layer at the near surface. Thus a deeper and graded cross-linked surface region was formed. The study shows that there is greater flexibility for tailoring surface properties of polymers by using a judicious combination of ion species, ion energies, and fluences.