We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The boundary-layer spots involved here come from large-time theory and related computations on the Euler equations to cover the majority of the global properties of the spot disturbances, which are nonlinear, three-dimensional, and transitional rather than turbulent. The amplitude levels investigated are higher than those examined in detail previously and produce a new near-wall momentum contribution in the mean flow, initially close to the wingtips of the spot. This enables the amplitude levels in the analysis to be raised successively, a process which gradually causes the wing-tip region to spread inwards. The process is accompanied by subtle increases in the induced phase variations. Among other things the work finds the details of how nonlinear effects grow from the wing-tips to eventually alter the entire trailing edge, and then the centre of the spot, in a strongly nonlinear fashion. Comparisons with earlier suggestions and with experiments are described at the end.
The spectral function ρα(μ) (−∞<μ<∞) associated with the Sturm–Liouville equation
and a boundary condition
is a non-decreasing function of μ which is defined in terms of the Titchmarsh–Weyl function mα(λ) for (1.1) and (1.2). Thus, taking into account a standardization of the sign attached to mα(λ), we have
The relationship between the topological dimension of a separable metric space and the Hausdorff dimensions of its homeomorphic images has been known for some time. In this note we consider topological and packing dimensions, and show that if X is a separable metric space, then
where and denote the topological and packing dimensions of X, respectively.
Let m and n be integers with 0<m<n and let μ be a Radon measure on ℝn with compact support. For the Hausdorff dimension, dimH, of sections of measures we have the following equality: for almost all (n − m)-dimensional linear subspaces V
provided that dimH μ > m. Here μv,a is the sliced measure and V⊥ is the orthogonal complement of V. If the (m + d)-energy of the measure μ is finite for some d>0, then for almost all (n − m)-dimensional linear subspaces V we have
In this note we give an answer to the following problem of Todorcevic: Find out the combinatorial essence behind the fact that the family ℋ of the ground-model infinite sets of integers in a Perfect-set forcing extension has the property that for any Borel f: [ℕ]ω → {0, 1} there exists an A ∈ ℋ such that f is constant on [A]ω (see [7], [13]). In other words, one needs to capture the combinatorial properties of the family ℋ of ground-model subsets of ℕ which assure that it diagonalizes all Borel partitions. It turns out that the notion which results from our analysis of this problem is a bit more optimal than the older notion of a “happy family” (or selective coideal) introduced by A.R.D. Mathias [16] long ago in order to extend the well-known theorems of Galvin–Prikry [6] and Silver [25] (see Theorems 3.1 and 4.1 below). We should remark that these Mathias-style extensions can indeed be as useful in the applications as the original partition theorems.
Let K be an arbitrary compact space and C(K) the space of continuous functions on K endowed with its natural supremum norm. We show that for any subset B of the unit sphere of C(K)* on which every function of C(K) attains its norm, a bounded subset A of C(K) is weakly compact if, and only if, it is compact for the topology tp(B) of pointwise convergence on B. It is also shown that this result can be extended to a large class of Banach spaces, which contains, for instance, all uniform algebras. Moreover we prove that the space (C(K), tp(B)) is an angelic space in the sense of D. H. Fremlin.
Let X be a Hausdorff topological space and let ρ be a metric on it, not necessarily related to the topology. The space X is said to be fragmented by the metric ρ if each nonempty set in X has nonempty relatively open subsets of arbitrary small ρ-diameter. This concept was introduced by Jayne and Rogers (see [2]) while they studied the existence of Borel selections for upper semicontinuous set-valued maps.
Let f be a complex valued function from the open upper halfplane E of the complex plane. We study the set of all z∈∂E such that there exist two Stoltz angles V1, V2 in E with vertices in z (i.e., Vi is a closed angle with vertex at z and Vi\{z} ⊂ E, i = 1, 2) such that the function f has different cluster sets with respect to these angles at z. E. P. Dolzhenko showed that this set of singular points is G∂σ and σ-porous for every f. He posed the question of whether each G∂σ σ-porous set is a set of such singular points for some f. We answer this question negatively. Namely, we construct a G∂ porous set, which is a set of such singular points for no function f.
We consider Riemannian orbifolds with Ricci curvature nonnegative outside a compact set and prove that the number of ends is finite. We also show that if that compact set is small then the Riemannian orbifolds have only two ends. A version of splitting theorem for orbifolds also follows as an easy consequence.
L'objet de cet article est d'étudier un procédé de summation associé á certaines séries. Notant P(n) le plus grand facteur premier d'un entier générique n, nous rappellons les définitions de P-convergence et de P-régularité d'une série, introduites dans [7].
A recurring theme in number theory is that multiplicative and additive properties of integers are more or less independent of each other, the classical result in this vein being Dirichlet's theorem on primes in arithmetic progressions. Since the set of primitive roots to a given modulus is a union of arithmetic progressions, it is natural to study the distribution of prime primitive roots. Results concerning upper bounds for the least prime primitive root to a given modulus q, which we denote by g*(q), have hitherto been of three types. There are conditional bounds: assuming the Generalized Riemann Hypothesis, Shoup [11] has shown that
where ω(n) denotes the number of distinct prime factors of n. There are also upper bounds that hold for almost all moduli q. For instance, one can show [9] that for all but O(Y∈) primes up to Y, we have
for some positive constant C(∈). Finally, one can apply a much stronger result, a uniform upper bound for the least prime in a single arithmetic progression. The best uniform result of this type, due to Heath-Brown [7], implies that . However, there is not at present any stronger unconditional upper bound for g*(q) that holds uniformly for all moduli q. The purpose of this paper is to provide such an upper bound, at least for primitive roots that are “almost prime”.
There is an error in our paper “Bounds on the covering radius of a lattice” published in this journal in 1996 (vol. 43, pp. 159–164). Theorem 1 of the paper should be corrected as follows.