The composition of an Fe-Mn-Si-Cr-Ni stainless steel with shape memory effect was altered in this work in order to increase the strength of the alloy. The alloy possessed a low yield strength which is a major draw back for structural applications.
Nitrogen alloying, using nitrogen pressurized melting (P=l–10 atm), was employed to introduce a nitrogen concentration of up to 0.36 wt%. The effect of nitrogen alloying on shape memory effect was studied through mechanical testing. It was found that nitrogen alloying increased the hardness; however, nitrogen as an interstitial alloying element suppressed the γ⇒ε transformation and therefore decreased the shape memory effect.
Introducing small amount of Nb (e. g., 0.36 wt%) to the nitrogen containing alloys caused formation of NbN. The NbN compound was in the form of globular dispersed particles (200 nm) which increased the strength of the alloy without significantly changing the shape memory effect.