Polycrystalline diamond film (PDF) is known for its high power, high temperature, and radiation hard potential. The interest in piezoresistivity of PDF is that it is a candidate for high temperature sensing (e.g., pressure sensor).
Piezoresistivity measurements were taken of boron-doped PDF grown by microwave-plasma chemical vapor deposition(CVD). Three substrates, silicon, aluminum nitride and tungsten were used. Films were detached from these substrates, then attached to a ceramic substrate. The piezoresistivity varies, dependent on the original host substrate. For example, at room temperature, the PDF film from tungsten has a greater gauge factor, around 75. The carrier activation energy of this film, determined from log R(l/T), was nominally 0.25eV.
Combining thick film technology and CVD processes, patterned B-doped PDF has been achieved monolithically on A1N substrates. The characteristics of this configuration is being investigated and will be presented.