The analysis of morphological disparity and of morphospace occupation through the macroevolutionary history of clades is now a major research program in paleobiology, and increasingly so in organismal and comparative biology. Most studies have focused on the relationship between taxonomic diversity and morphological disparity, and on ecological or developmental controls. However, the geographic context of diversification has remained understudied. Here we address geography quantitatively. Diversity, disparity, and paleogeographic dispersion are used to describe the evolutionary history of an extinct echinoderm clade, the class Stylophora (cornutes, mitrates), from the Middle Cambrian to the Middle Devonian (about 128 Myr subdivided into 12 stratigraphic intervals). Taxonomic diversity is estimated from a representative sample including 73.3% of described species and 92.4% of described genera. Stylophoran morphology is quantified on the basis of seven morphometric parameters derived from image analysis of homologous skeletal regions. Three separate principal coordinates analyses (PCO) are performed for thecal outlines, plates from the lower thecal surface, and plates from the upper thecal surface, respectively. PCO scores from these three separate analyses are then used as variables for a single, global, meta-PCO. For each time interval, disparity is calculated as the sum of variance in the multidimensional morphospace defined by the meta-PCO axes. For each time interval, a semiquantitative index of paleogeographic dispersion is calculated, reflecting both global (continental) and local (regional) aspects of dispersion.
Morphospace occupation of cornutes and mitrates is partly overlapping, suggesting some morphologic convergences between the two main stylophoran clades, probably correlated to similar modes of life (e.g., symmetrical cornutes and primitive mitrocystitids). Hierarchical clustering allowed the identification of three main morphological sets (subdivided into 11 subsets) within the global stylophoran morphospace. These morphological sets are used to analyze the spatiotemporal variations of disparity. The initial radiation of stylophorans is characterized by a low diversity and a rapid increase in disparity (Middle Cambrian–Tremadocian). The subsequent diversification involved filling and little expansion of morphospace (Arenig–Middle Ordovician). Finally, both stylophoran diversity and disparity decreased relatively steadily from the Late Ordovician to the Middle Devonian, with the exception of a second (lower) peak in the Early Devonian. Such a pattern is comparable to that of other Paleozoic marine invertebrates such as blastozoans and orthid brachiopods. During the Lower to Middle Ordovician, the most dramatic diversification of stylophorans took place with a paleogeographic dispersion essentially limited to the periphery of Gondwana. In the Late Ordovician, stylophorans steadily extended toward lower paleolatitudes, and new environmental conditions, where some of them radiated, and finally survived the end-Ordovician mass extinction (e.g., anomalocystitids). This pattern of paleobiogeographic dispersion is comparable to that of other examples of Paleozoic groups of marine invertebrates, such as bivalve mollusks.