No CrossRef data available.
Article contents
Improving the integrative memory model by integrating the temporal dynamics of memory
Published online by Cambridge University Press: 03 January 2020
Abstract
Despite highlighting the role of the attribution system and proposing a coherent large-scale architecture of declarative memory, the integrative memory model would be more “integrative” if the temporal dynamics of the interactions between its components was clarified. This is necessary to make predictions in patients with brain injury and hypothesize dissociations.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 2020
References
Addis, D. R. & Schacter, D. L. (2012) The hippocampus and imagining the future: Where do we stand? Frontiers in Human Neuroscience 5: article no. 173. Available at: https://doi.org/10.3389/fnhum.2011.00173.CrossRefGoogle ScholarPubMed
Balestrini, S., Francione, S., Mai, R., Castana, L., Casaceli, G., Marino, D., Provinciali, L., Cardinale, F. & Tassi, L. (2015) Multimodal responses induced by cortical stimulation of the parietal lobe: A stereo-electroencephalography study. Brain 138(9):2596–607. Available at: https://doi.org/10.1093/brain/awv187.CrossRefGoogle ScholarPubMed
Barbeau, E. J., Taylor, M. J., Regis, J., Marquis, P., Chauvel, P. & Liégeois-Chauvel, C. (2008) Spatio temporal dynamics of face recognition. Cerebral Cortex 18(5):997–1009. Available at: https://doi.org/10.1093/cercor/bhm140.CrossRefGoogle ScholarPubMed
Besson, G., Ceccaldi, M., Didic, M. & Barbeau, E. J. (2012) The speed of visual recognition memory. Visual Cognition 20(10):1131–52. Available at: https://doi.org/10.1080/13506285.2012.724034.CrossRefGoogle Scholar
Curot, J., Busigny, T., Valton, L., Denuelle, M., Vignal, J. P., Maillard, L., Chauvel, P., Pariente, J., Trebuchon, A., Bartolomei, F. & Barbeau, E. J. (2017) Memory scrutinized through electrical brain stimulation: A review of 80 years of experiential phenomena. Neuroscience and Biobehavioral Reviews 78:161–77. Available at: https://doi.org/10.1016/j.neubiorev.2017.04.018.CrossRefGoogle ScholarPubMed
David, O., Job, A. S., De Palma, L., Hoffmann, D., Minotti, L. & Kahane, P. (2013) Probabilistic functional tractography of the human cortex. NeuroImage 80:307–17. Available at: https://doi.org/10.1016/j.neuroimage.2013.05.075.CrossRefGoogle ScholarPubMed
Eichenbaum, H. (2017a) On the integration of space, time, and memory. Neuron 95(5):1007–1018. Available at: https://doi.org/10.1016/j.neuron.2017.06.036.CrossRefGoogle Scholar
Ekstrom, A. D. & Ranganath, C. (2018) Space, time, and episodic memory: The hippocampus is all over the cognitive map. Hippocampus 28(9):680–87. Available at: https://doi.org/10.1002/hipo.22750.CrossRefGoogle ScholarPubMed
Foster, B. L. & Parvizi, J. (2017) Direct cortical stimulation of human posteromedial cortex. Neurology 88(7):685–91. doi: 10.1212/wnl.0000000000003607.CrossRefGoogle ScholarPubMed
Hoppstädter, M., Baeuchl, C., Diener, C., Flor, H. & Meyer, P. (2015) Simultaneous EEG-fMRI reveals brain networks underlying recognition memory ERP old/new effects. NeuroImage 116:112–22. Available at: https://doi.org/10.1016/j.neuroimage.2015.05.026.CrossRefGoogle ScholarPubMed
Krieg, J., Koessler, L., Jonas, J., Colnat-Coulbois, S., Vignal, J. P., Bénar, C. G. & Maillard, L. G. (2017) Discrimination of a medial functional module within the temporal lobe using an effective connectivity model: A CCEP study. NeuroImage 161:219–31. Available at: https://doi.org/10.1016/j.neuroimage.2017.07.061.CrossRefGoogle ScholarPubMed
Kubota, Y., Enatsu, R., Gonzalez-Martinez, J., Bulacio, J., Mosher, J., Burgess, R. C. & Nair, D. R. (2013) In vivo human hippocampal cingulate connectivity: A corticocortical evoked potentials (CCEPs) study. Clinical Neurophysiology 124(8):1547–56. Available at: https://doi.org/10.1016/j.clinph.2013.01.024.CrossRefGoogle ScholarPubMed
Kukushkin, N. V. & Carew, T. J. (2017) Memory takes time. Neuron 95(2):259–79. Available at: https://doi.org/10.1016/j.neuron.2017.05.029.CrossRefGoogle ScholarPubMed
Mormann, F., Kornblith, S., Quiroga, R. Q., Kraskov, A., Cerf, M., Fried, I. & Koch, C. (2008) Latency and Selectivity of Single Neurons Indicate Hierarchical Processing in the Human medial temporal Lobe. Journal of Neuroscience 28(36):8865–72. Available at: https://doi.org/10.1523/JNEUROSCI.1640-08.2008.CrossRefGoogle ScholarPubMed
Ranganath, C. & Hsieh, L. T. (2016) The hippocampus: A special place for time. Annals of the New York Academy of Sciences 1369(1):93–110. Available at: https://doi.org/10.1111/nyas.13043.CrossRefGoogle Scholar
Staresina, B. P., Cooper, E. & Henson, R. N. (2013) Reversible information flow across the medial temporal lobe: The hippocampus links cortical modules during memory retrieval. Journal of Neuroscience 33(35):14184–92. doi: 10.1523/jneurosci.1987-13.2013.CrossRefGoogle ScholarPubMed
Staresina, B. P., Reber, T. P., Niediek, J., Boström, J., Elger, C. E. & Mormann, F. (2019) Recollection in the human hippocampal-entorhinal cell circuitry. Nature Communications 10(1):1–11. Available at: https://doi.org/10.1038/s41467-019-09558-3.CrossRefGoogle ScholarPubMed
Steinvorth, S., Wang, C., Ulbert, I., Schomer, D. & Halgren, E. (2010) Human entorhinal gamma and theta oscillations selective for remote autobiographical memory. Hippocampus 173:166–73. Available at: https://doi.org/10.1002/hipo.20597.Google Scholar
Trautner, P., Dietl, T., Staedtgen, M., Mecklinger, A., Grunwald, T., Elger, C. E. & Kurthen, M. (2004) Recognition of famous faces in the medial temporal lobe: An invasive ERP study. Neurology 63(7):1203–208. Available at: https://doi.org/10.1212/01.WNL.0000140487.55973.D7.CrossRefGoogle ScholarPubMed
Trebaul, L., Deman, P., Tuyisenge, V., Jedynak, M., Hugues, E., Rudrauf, D., Bhattacharjee, M., Tadel, F., Chanteloup-Foret, B., Saubat, C., Reyes Mejia, G. C., Adam, C., Nica, A., Pail, M., Dubeau, F., Rheims, S., Trébuchon, A., Wang, H., Liu, S., Blauwblomme, T., Garcés, M., De Palma, L., Valentin, A., Metsähonkala, E.-L., Petrescu, A. M., Landré, E., Szurhaj, W., Hirsch, E., Valton, L., Rocamora, R., Schulze-Bonhage, A., Mindruta, I., Francione, S., Maillard, L., Taussig, D., Kahane, P. & David, O. (2018) Probabilistic functional tractography of the human cortex revisited. NeuroImage 181:414–29. Available at: https://doi.org/10.1016/j.neuroimage.2018.07.039.CrossRefGoogle ScholarPubMed
Target article
An integrative memory model of recollection and familiarity to understand memory deficits
Related commentaries (22)
Cognitive control constrains memory attributions
Cutting out the middleman: Separating attributional biases from memory deficits
Dual processes in memory: Evidence from memory of time-of-occurrence of events
Entities also require relational coding and binding
Episodic memory is emotionally laden memory, requiring amygdala involvement
Fluency: A trigger of familiarity for relational representations?
Global matching and fluency attribution in familiarity assessment
How do memory modules differentially contribute to familiarity and recollection?
Improving the integrative memory model by integrating the temporal dynamics of memory
Priming recognition memory test cues: No evidence for an attributional basis of recollection
Refining the bigger picture: On the integrative memory model
Representational formats in medial temporal lobe and neocortex also determine subjective memory features
The integrative memory model is detailed, but skimps on false memories and development
The other side of the coin: Semantic dementia as a lesion model for understanding recollection and familiarity
The role of anxiety in the integrative memory model
The role of reference frames in memory recollection
The subjective experience of recollection and familiarity in Alzheimer's disease
The ventral lateral parietal cortex in episodic memory: From content to attribution
There is more to memory than recollection and familiarity
Two processes are not necessary to understand memory deficits
Understanding misidentification syndromes using the integrative memory model
What face familiarity feelings say about the lateralization of specific entities within the core system
Author response
Interactions with the integrative memory model