Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T16:13:39.548Z Has data issue: false hasContentIssue false

An integrative memory model of recollection and familiarity to understand memory deficits

Published online by Cambridge University Press:  05 February 2019

Christine Bastin
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. Christine.Bastin@uliege.beGabriel.Besson@uliege.beEmma.Delhaye@uliege.bemgeurten@uliege.beEric.Salmon@uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.be
Gabriel Besson
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. Christine.Bastin@uliege.beGabriel.Besson@uliege.beEmma.Delhaye@uliege.bemgeurten@uliege.beEric.Salmon@uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.be
Jessica Simon
Affiliation:
Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. j.simon@uliege.behttps://www.psyncog.uliege.be
Emma Delhaye
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. Christine.Bastin@uliege.beGabriel.Besson@uliege.beEmma.Delhaye@uliege.bemgeurten@uliege.beEric.Salmon@uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.be
Marie Geurten
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. Christine.Bastin@uliege.beGabriel.Besson@uliege.beEmma.Delhaye@uliege.bemgeurten@uliege.beEric.Salmon@uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.be
Sylvie Willems
Affiliation:
Psychological and Speech Therapy Consultation Center & Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. sylvie.willems@uliege.behttps://www.psyncog.uliege.be
Eric Salmon
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000Liège, Belgium. Christine.Bastin@uliege.beGabriel.Besson@uliege.beEmma.Delhaye@uliege.bemgeurten@uliege.beEric.Salmon@uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.behttps://www.psyncog.uliege.behttp://www.giga.uliege.behttps://www.psyncog.uliege.be Memory Clinic, University Hospital, 4000Liège, Belgium.

Abstract

Humans can recollect past events in details (recollection) and/or know that an object, person, or place has been encountered before (familiarity). During the last two decades, there has been intense debate about how recollection and familiarity are organized in the brain. Here, we propose an integrative memory model which describes the distributed and interactive neurocognitive architecture of representations and operations underlying recollection and familiarity. In this architecture, the subjective experience of recollection and familiarity arises from the interaction between core systems (storing particular kinds of representations shaped by specific computational mechanisms) and an attribution system. By integrating principles from current theoretical views about memory functioning, we provide a testable framework to refine the prediction of deficient versus preserved mechanisms in memory-impaired populations. The case of Alzheimer's disease (AD) is considered as an example because it entails progressive lesions starting with limited damage to core systems before invading step-by-step most parts of the model-related network. We suggest a chronological scheme of cognitive impairments along the course of AD, where the inaugurating deficit would relate early neurodegeneration of the perirhinal/anterolateral entorhinal cortex to impaired familiarity for items that need to be discriminated as viewpoint-invariant conjunctive entities. The integrative memory model can guide future neuropsychological and neuroimaging studies aiming to understand how such a network allows humans to remember past events, to project into the future, and possibly also to share experiences.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggleton, J. P. (2010) Understanding retrosplenial amnesia: Insights from animal studies. Neuropsychologia 48(8):2328–38. doi: 10.1016/j.neuropsychologia.2009.09.030.Google Scholar
Aggleton, J. P. (2012) Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neuroscience and Biobehavioral Reviews 36(7):1579–96. doi: 10.1016/j.neubiorev.2011.09.005.Google Scholar
Aggleton, J. P. & Brown, M. W. (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences 22:425–89.Google Scholar
Aggleton, J. P., Dumont, J. R. & Warburton, E. C. (2011) Unraveling the contributions of the diencephalon to recognition memory: A review. Learning and Memory 18(6):384400. doi: 10.1101/lm.1884611.Google Scholar
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, , Gamst, A., Holtzman, D. M., Jagust, W. J., Petersen, R. C., Snyder, P. J., Carrillo, M. C., Thies, B. & Phelps, C. H. (2011) The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia 7(3):270–79. doi: 10.1016/j.jalz.2011.03.008.Google Scholar
Aly, M., Yonelinas, A. P., Kishiyama, M. M. & Knight, R. T. (2011) Damage to the lateral prefrontal cortex impairs familiarity but not recollection. Behavioral Brain Research 225(1):297304. doi: 10.1016/j.bbr.2011.07.043.Google Scholar
Anderson, N. D., Davidson, P. S., Mason, W. P., Gao, F., Binns, M. A. & Winocur, G. (2011) Right frontal lobe mediation of recollection- and familiarity-based verbal recognition memory: Evidence from patients with tumor resections. Journal of Cognitive Neuroscience 23(12):3804–16. doi: 10.1162/jocn_a_00050.Google Scholar
Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. (2010) Functional-anatomic fractionation of the brain's default network. Neuron 65:550–62.Google Scholar
Bar, M., Aminoff, E. & Schacter, D. L. (2008) Scenes unseen: The parahippocampal cortex intrinsically subserves contextual associations, not scenes or places per se. Journal of Neuroscience 28(34):8539–44. doi: 10.1523/JNEUROSCI.0987-08.2008.Google Scholar
Barbeau, E., Wendling, F., Regis, J., Duncan, R., Poncet, M., Chauvel, P. & Bartolomei, F. (2005) Recollection of vivid memories after perirhinal region stimulations: Synchronization in the theta range of spatially distributed brain areas. Neuropsychologia 43(9):1329–37. doi: 10.1016/j.neuropsychologia.2004.11.025.Google Scholar
Barbeau, E. J., Pariente, J., Felician, O. & Puel, M. (2011) Visual recognition memory: A double anatomo-functional dissociation. Hippocampus 21(9):929–34. doi: 10.1002/hipo.20848.Google Scholar
Barense, M. D., Warren, J. D., Bussey, T. J. & Saksida, L. M. (2016) The temporal lobes. In: Oxford textbook of cognitive neurology and dementia, ed. Husain, M. & Schott, J., pp. 3949. Oxford University Press.Google Scholar
Bartolomei, F., Barbeau, E., Gavaret, M., Guye, M., McGonigal, A., Regis, J. & Chauvel, P. (2004) Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology 63(5):858–64.Google Scholar
Bastin, C., Bahri, M. A., Miévis, F., Lemaire, C., Collette, F., Genon, S., Simon, J., Guillaume, B., Diana, R. A., Yonelinas, A. P. & Salmon, E. (2014) Associative memory and its cerebral correlates in Alzheimer's disease: Evidence for distinct deficits of relational and conjunctive memory. Neuropsychologia 63:99106. Available at: http://dx.doi.org/10.1016/j.neuropsychologia.2014.08.023.Google Scholar
Berron, D., Schutze, H., Maass, A., Cardenas-Blanco, A., Kuijf, H. J., Kumaran, D. & Duzel, E. (2016) Strong evidence for pattern separation in human dentate gyrus. Journal of Neuroscience 36(29):7569–79. doi: 10.1523/JNEUROSCI.0518-16.2016.Google Scholar
Besson, G., Ceccaldi, M., Tramoni, E., Felician, O., Didic, M. & Barbeau, E. J. (2015) Fast, but not slow, familiarity is preserved in patients with amnestic mild cognitive impairment. Cortex 65:3649. doi: 10.1016/j.cortex.2014.10.020.Google Scholar
Besson, G., Simon, J., Salmon, E. & Bastin, C. (2017) Testing a new memory task sensitive to early entorhinal/perirhinal atrophy in Alzheimer's disease. Alzheimer's & Dementia 13(7):P477. doi: 10.1016/j.jalz.2017.06.505.Google Scholar
Bird, C. M., Keidel, J. L., Ing, L. P., Horner, A. J. & Burgess, N. (2015) Consolidation of complex events via reinstatement in posterior cingulate cortex. Journal of Neuroscience 35(43):14426–34. doi:10.1523/JNEUROSCI.1774-15.2015.Google Scholar
Bodner, G. E. & Lindsay, D. S. (2003) Remembering and knowing in context. Journal of Memory and Language 48:563–80.Google Scholar
Bodner, G. E. & Richardson-Champion, D. D. L. (2007) Remembering is in the details: Effects of test-list context on memory for an event. Memory 15(7):718–29.Google Scholar
Bogacz, R. & Brown, M. W. (2003) An anti-Hebbian model of familiarity discrimination in the perirhinal cortex. Neurocomputing 52–54:16. Available at: https://doi.org/10.1016/S0925-2312(02)00738-5.Google Scholar
Bogacz, R., Brown, M. W. & Giraud-Carrier, C. (2001) Model of familiarity discrimination in the perirhinal cortex. Journal of Computational Neuroscience 10(1):523.Google Scholar
Bowles, B., Crupi, C., Mirsattari, S. M., Pigott, S. E., Parrent, A. G., Pruessner, J. C., Yonelinas, A. P. & Köhler, S. (2007) Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus. Proceedings of the National Academy of Sciences USA 104(41):16382–87.Google Scholar
Bowles, B., Crupi, C., Pigott, S., Parrent, A., Wiebe, S., Janzen, L. & Kohler, S. (2010) Double dissociation of selective recollection and familiarity impairments following two different surgical treatments for temporal-lobe epilepsy. Neuropsychologia 48(9):2640–47. doi: 10.1016/j.neuropsychologia.2010.05.010.Google Scholar
Braak, H. & Braak, E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica 82:239–59.Google Scholar
Braak, H. & Braak, E. (1995) Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiology of Aging 16(3):271–84.Google Scholar
Braak, H. & Del Tredici, K. (2015) The preclinical phase of the pathological process underlying sporadic Alzheimer's disease. Brain 138(Pt 10):2814–33. doi: 10.1093/brain/awv236.Google Scholar
Brandt, K. R., Eysenck, M. W., Nielsen, M. K. & von Oertzen, T. J. (2016) Selective lesion to the entorhinal cortex leads to an impairment in familiarity but not recollection. Brain and Cognition 104:8292. doi: 10.1016/j.bandc.2016.02.005.Google Scholar
Brettschneider, J., Del Tredici, K., Lee, V. M. & Trojanowski, J. Q. (2015) Spreading of pathology in neurodegenerative diseases: A focus on human studies. Nature Reviews: Neuroscience 16(2):109–20. doi: 10.1038/nrn3887.Google Scholar
Brown, A. A. & Bodner, G. E. (2011) Re-examining dissociations between remembering and knowing: Binary judgments vs. independent ratings. Journal of Memory and Language 65(2):98108. Available at: http://dx.doi.org/10.1016/j.jml.2011.04.003.Google Scholar
Bruffaerts, R., Dupont, P., Peeters, R., De Deyne, S., Storms, G. & Vandenberghe, R. (2013) Similarity of fMRI activity patterns in left perirhinal cortex reflects semantic similarity between words. Journal of Neuroscience 33(47):18597–607. doi: 10.1523/JNEUROSCI.1548-13.2013.Google Scholar
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. (2008) The brain's default network. Annals of the New York Academy of Sciences 1124:138.Google Scholar
Bzdok, D., Heeger, A., Langner, R., Laird, A. R., Fox, P. T., Palomero-Gallagher, N., Vogt, B. A., Zilles, K. & Eickhoff, S. B. (2015) Subspecialization in the human posterior medial cortex. NeuroImage 106:5571. doi: 10.1016/j.neuroimage.2014.11.009.Google Scholar
Cabeza, R., Ciaramelli, E. & Moscovitch, M. (2012) Cognitive contributions of the ventral parietal cortex: An integrative theoretical account. Trends in Cognitive Sciences 16(6):338–52. doi: 10.1016/j.tics.2012.04.008.Google Scholar
Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. (2008) The parietal cortex and episodic memory: An attentional account. Nature Reviews Neuroscience 9(8):613–25. Available at: http://doi.org/10.1038/nrn2459.Google Scholar
Chen, J., Leong, Y. C., Honey, C. J., Yong, C. H., Norman, K. A. & Hasson, U. (2017) Shared memories reveal shared structure in neural activity across individuals. Nature Neuroscience 20(1):115–25. doi: 10.1038/nn.4450.Google Scholar
Chetelat, G., Desgranges, B., de la Sayette, V., Viader, F., Berkouk, K., Landeau, B., Lalevée, C., Le Doze, F., Dupuy, B., Hannequin, D., Baron, J. C. & Eustache, F. (2003) Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain 126(Pt 9):1955–67. doi: 10.1093/brain/awg196.Google Scholar
Chua, E., Pergolizzi, D. & Weintraub, R. R. (2014) The cognitive neuroscience of metamemory monitoring: Understanding metamemory processes, subjective levels expressed, and metacognitive accuracy. In: The cognitive neuroscience of metacognition, ed. Fleming, S. M. & Frith, C. D., pp. 267–91. Springer.Google Scholar
Ciaramelli, E., Grady, C. L. & Moscovitch, M. (2008) Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 46:1828–51.Google Scholar
Clark, I. A. & Maguire, E. A. (2016) Remembering preservation in hippocampal amnesia. Annual Review of Psychology 67:5182. doi: 10.1146/annurev-psych-122414-033739.Google Scholar
Clarke, A. & Tyler, L. K. (2015) Understanding what we see: How we derive meaning from vision. Trends in Cognitive Sciences 19(11):677–87. doi: 10.1016/j.tics.2015.08.008.Google Scholar
Conroy, M. A., Hopkins, R. O. & Squire, L. R. (2005) On the contribution of perceptual fluency and priming to recognition memory. Cognitive and Affective Behavioral Neuroscience 5(1):1420.Google Scholar
Cowell, R. A., Bussey, T. J. & Saksida, L. M. (2006) Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. Journal of Neuroscience 26(47):12186–97. doi: 10.1523/jneurosci.2818-06.2006.Google Scholar
Cowell, R. A., Bussey, T. J. & Saksida, L. M. (2010) Components of recognition memory: Dissociable cognitive processes or just differences in representational complexity? Hippocampus 20(11):1245–62. doi: 10.1002/hipo.20865.Google Scholar
Danet, L., Pariente, J., Eustache, P., Raposo, N., Sibon, I., Albucher, J.-F., Bonneville, F., Péran, P. & Barbeau, E. J. (2017) medial thalamic stroke and its impact on familiarity and recollection. eLife 6:e28141. doi: 10.7554/eLife.28141.Google Scholar
D'Argembeau, A. (2013) On the role of the ventromedial prefrontal cortex in self-processing: The valuation hypothesis. Frontiers in Human Neuroscience 7: article no. 372. (Online publication). doi: 10.3389/fnhum.2013.00372.Google Scholar
D'Argembeau, A., Collette, F., Van der Linden, M., Laureys, S., Del Fiore, G., Degueldre, C., Luxen, A. & Salmon, E. (2005) Self-referential reflective activity and its relationship with rest: A PET study. NeuroImage 25:616–24.Google Scholar
Davachi, L. (2006) Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology 16(6):693700. doi: 10.1016/j.conb.2006.10.012.Google Scholar
Davachi, L., Mitchell, J. P. & Wagner, A. D. (2003) Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences USA 100(4):2157–62.Google Scholar
Dehaene, S. & Naccache, L. (2001) Towards a cognitive neuroscience of consciousness: Basic evidence and a workspace framework. Cognition 79:137.Google Scholar
Delhaye, E., Bahri, M. A., Salmon, E. & Bastin, C. (2019) Impaired perceptual integration and memory for unitized representations are associated with perirhinal cortex atrophy in Alzheimer's disease. Neurobiology of Aging 73:135–44. doi: 10.1016/j.neurobiolaging.2018.09.021.Google Scholar
Dew, I. T. Z. & Cabeza, R. (2013) A broader view of perirhinal function: From recognition memory to fluency-based decisions. Journal of Neuroscience 33(36):14466–74. doi: 10.1523/JNEUROSCI.1413-13.2013.Google Scholar
Diana, R. A., Yonelinas, A. P. & Ranganath, C. (2007) Imaging recollection and familiarity in the medial temporal lobe: A three-component model. Trends in Cognitive Sciences 11(9):379–86. doi: 10.1016/j.tics.2007.08.001.Google Scholar
Diana, R. A., Yonelinas, A. P. & Ranganath, C. (2010) medial temporal lobe activity during source retrieval reflects information type, not memory strength. Journal of Cognitive Neuroscience 22(8):1808–18.Google Scholar
Diana, R. A., Yonelinas, A. P. & Ranganath, C. (2013) Parahippocampal cortex activation during context reinstatement predicts item recollection. Journal of Experimental Psychology: General 142(4):1287–97. doi: 10.1037/a0034029.Google Scholar
Dodson, C. S. & Schacter, D. L. (2001) “If I had said it I would have remembered it”: Reducing false memories with distinctiveness heuristic. Psychonomic Bulletin and Review 8(1):155–61.Google Scholar
Doeller, C. F., Barry, C. & Burgess, N. (2010) Evidence for grid cells in a human memory network. Nature 463(7281):657–61. doi: 10.1038/nature08704.Google Scholar
Duarte, A., Ranganath, C. & Knight, R. T. (2005) Effects of unilateral prefrontal lesions on familiarity, recollection, and source memory. Journal of Neuroscience 25(36):8333–37. doi: 10.1523/JNEUROSCI.1392-05.2005.Google Scholar
Duke, D., Fiacconi, C. M. & Köhler, S. (2014) Parallel effects of processing fluency and positive affect on familiarity-based recognition decisions for faces. Frontiers in Psychology 5: article no. 328. doi: 10.3389/fpsyg.2014.00328.Google Scholar
Dunn, C. J., Duffy, S. L., Hickie, I. B., Lagopoulos, J., Lewis, S. J., Naismith, S. L. & Shine, J. M. (2014) Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment. NeuroImage: Clinical 4:473–80. doi: 10.1016/j.nicl.2014.02.010.Google Scholar
Edelstyn, N. M. J., Grange, J. A., Ellis, S. J. & Mayes, A. R. (2016) A deficit in familiarity-driven recognition in a right-sided mediodorsal thalamic lesion patient. Neuropsychology 30(2):213–24. doi: 10.1037/neu0000226.Google Scholar
Eichenbaum, H. (2013) Memory on time. Trends in Cognitive Sciences 17(2):8188. doi: 10.1016/j.tics.2012.12.007.Google Scholar
Eichenbaum, H. (2017c) The role of the hippocampus in navigation is memory. Journal of Neurophysiology 117(4):1785–96. doi: 10.1152/jn.00005.2017.Google Scholar
Eichenbaum, H. & Cohen, N. J. (2014) Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 83(4):764–70. doi: 10.1016/j.neuron.2014.07.032.Google Scholar
Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. (2007) The medial temporal lobe and recognition memory. Annual Review of Neuroscience 30:123–52. doi: 10.1146/annurev.neuro.30.051606.094328.Google Scholar
Erez, J., Cusack, R., Kendall, W. & Barense, M. D. (2016) Conjunctive coding of complex object features. Cerebral Cortex 26:2271–82. doi: 10.1093/cercor/bhv081.Google Scholar
Fiacconi, C. M., Peter, E. L., Owais, S. & Köhler, S. (2016) Knowing by heart: Visceral feedback shapes recognition memory judgments. Journal of Experimental Psychology: General 145(5):559–72. doi: 10.1037/xge0000164.Google Scholar
Foster, B. L., Dastjerdi, M. & Parvizi, J. (2012) Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proceedings of the National Academy of Sciences USA 109(38):15514–19. doi: 10.1073/pnas.1206580109.Google Scholar
Foster, B. L. & Parvizi, J. (2017) Direct cortical stimulation of human posteromedial cortex. Neurology 88(7):685–91. doi: 10.1212/wnl.0000000000003607.Google Scholar
Gallo, D. A., Foster, K. T., Wong, J. T. & Bennett, D. A. (2010) False recollection of emotional pictures in Alzheimer's disease. Neuropsychologia 48(12):3614–18. doi: 10.1016/j.neuropsychologia.2010.08.011.Google Scholar
Genon, S., Bahri, M. A., Collette, F., Angel, L., d'Argembeau, A., Clarys, D., Kalenzaga, S., Salmon, E. & Bastin, C. (2014) Cognitive and neuroimaging evidence of impaired interaction between self and memory in Alzheimer's disease. Cortex 51:1124. doi: 10.1016/j.cortex.2013.06.009.Google Scholar
Genon, S., Collette, F., Feyers, D., Phillips, C., Salmon, E. & Bastin, C. (2013) Item familiarity and controlled associative retrieval in Alzheimer's disease: An fMRI study. Cortex 49:1566–84.Google Scholar
Geurten, M., Lloyd, M. & Willems, S. (2017) Hearing “quack” and remembering a duck: Evidence for fluency attribution in young children. Child Development 88(2):514–22. doi: 10.1111/cdev.12614.Google Scholar
Geurten, M. & Willems, S. (2017) The learned reinterpretation of fluency in amnesia. Neuropsychologia 101:1016. doi: 10.1016/j.neuropsychologia.2017.05.012.Google Scholar
Ghetti, S. (2003) Memory for nonoccurrences: The role of metacognition. Journal of Memory and Language 48(4):722–39. doi: 10.1016/s0749-596x(03)00005-6.Google Scholar
Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A. & Wagner, A. D. (2005) Memory strength and repetition suppression: Multimodal imaging of medial temporal cortical contributions to recognition. Neuron 47:751–61.Google Scholar
Graham, K. S., Barense, M. D. & Lee, A. C. (2010) Going beyond LTM in the MTL: A synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48(4):831–53. doi: 10.1016/j.neuropsychologia.2010.01.001.Google Scholar
Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex 19:7278.Google Scholar
Grober, E., Dickson, D., Sliwinski, M. J., Buschke, H., Katz, M., Crystal, H. & Lipton, R. B. (1999) Memory and mental status correlates of modified Braak staging. Neurobiology of Aging 20(6):573–79.Google Scholar
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J. & Sporns, O. (2008) Mapping the structural core of human cerebral cortex. PLoS Biology 6(7):e159. doi: 10.1371/journal.pbio.0060159.Google Scholar
Halbwachs, M. (1980) The collective memory. Harper & Row Colophon.Google Scholar
Hanseeuw, B. J., Van Leemput, K., Kavec, M., Grandin, C., Seron, X. & Ivanoiu, A. (2011) Mild cognitive impairment: Differential atrophy in the hippocampal subfields. American Journal of Neuroradiology 32(9):1658–61. doi: 10.3174/ajnr.A2589.Google Scholar
Haskins, A. L., Yonelinas, A. P., Quamme, J. R. & Ranganath, C. (2008) Perirhinal cortex supports encoding and familiarity-based recognition of novel associations. Neuron 59:554–60.Google Scholar
Henson, R. N. A., Rugg, M. D., Shallice, T., Josephs, O. & Dolan, R. J. (1999) Recollection and familiarity in recognition memory: An event-related functional magnetic resonance imaging study. The Journal of Neuroscience 19(10):3962–72.Google Scholar
Herholz, K., Salmon, E., Perani, D., Baron, J. C., Holthoff, V., Frolich, L., Schonknecht, P., Ito, K., Mielke, R., Kalbe, E., Zuendorf, G., Delbeuck, X., Pelati, O., Anchisi, D., Fazio, F., Kerrouche, N., Desgranges, B., Eustache, F., Beuthien-Baumann, B., Menzel, C., Schroder, J., Kato, T., Arahata, Y., Henze, M. & Heiss, W. D. (2002) Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. NeuroImage 17(1):302–16.Google Scholar
Higham, P. A. & Vokey, J. R. (2004) Illusory recollection and dual-process models of recognition memory. Quarterly Journal of Experimental Psychology A 57(4):714–44. doi: 10.1080/02724980343000468.Google Scholar
Hirabayashi, T., Takeuchi, D., Tamura, K. & Miyashita, Y. (2013) Microcircuits for hierarchical elaboration of object coding across primate temporal areas. Science 341(6142):191–95. doi: 10.1126/science.1236927.Google Scholar
Hirst, W., Yamashiro, J. K. & Coman, A. (2018) Collective memory from a psychological perspective. Trends in Cognitive Sciences 22(5):438–51. doi: 10.1016/j.tics.2018.02.010.Google Scholar
Inhoff, M. C. & Ranganath, C. (2015) Significance of objects in the perirhinal cortex. Trends in Cognitive Sciences 19(6):302303. Available at: http://dx.doi.org/10.1016/j.tics.2015.04.008.Google Scholar
Jack, C. R. Jr., Bennett, D. A., Blennow, K., Carrillo, M. C., Dunn, B., Haeberlein, S. B., Holtzman, D. M., Jagust, W., Jessen, F., Karlawish, J., Liu, E., Molinuevo, J. L., Montine, T., Phelps, C., Rankin, K. P., Rowe, C. C., Scheltens, P., Siemers, E., Snyder, H. M. & Sperling, R. (2018) NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's and Dementia 14(4):535–62. doi: 10.1016/j.jalz.2018.02.018.Google Scholar
Jack, C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., Shaw, L. M., Vemuri, P., Wiste, H. J., Weigand, S. D., Lesnick, T. G., Pankratz, M. C., Donohue, M. C. & Trojanowski, J. Q. (2013) Tracking pathophysiological processes in Alzheimer's disease: An updated hypothetical model of dynamic biomarkers. The Lancet Neurology 12(2):207–16. doi: 10.1016/s1474-4422(12)70291-0.Google Scholar
Jacoby, L. L. & Dallas, M. (1981) On the relationship between autobiographical memory and perceptual learning. Journal of Experimental Psychology: General 110(3):306–40.Google Scholar
Jacoby, L. L., Kelley, C. M. & Dywan, J. (1989) Memory attributions. In: Varieties of memory and consciousness: Essays in honour of Endel Tulving, ed. Roediger, H. L. & Craik, F. I. M., pp. 391422. Erlbaum.Google Scholar
Jacoby, L. L., Yonelinas, A. P. & Jennings, J. M. (1997) The relation between conscious and unconscious (automatic) influences: A declaration of independence. In: Scientific approaches to consciousness, ed. Cohen, J. D. & Schooler, J. W. pp. 1347. Erlbaum.Google Scholar
Johnson, J. D., McDuff, S. G., Rugg, M. D. & Norman, K. A. (2009) Recollection, familiarity, and cortical reinstatement: A multivoxel pattern analysis. Neuron 63(5):697708. doi: 10.1016/j.neuron.2009.08.011.Google Scholar
Johnson, J. D., Suzuki, M. & Rugg, M. D. (2013) Recollection, familiarity, and content-sensitivity in lateral parietal cortex: A high-resolution fMRI study. Frontiers in Human Neuroscience 7: article no. 219. doi: 10.3389/fnhum.2013.00219.Google Scholar
Jonin, P.-Y., Besson, G., La Joie, R., Pariente, J., Belliard, S., Barillot, C. & Barbeau, E. J. (2018) Superior explicit memory despite severe developmental amnesia: In-depth case study and neural correlates. Hippocampus 28(12):867–85. doi: 10.1002/hipo.23010.Google Scholar
Jonin, P.-Y., Calia, C., Muratot, S., Belliard, S., Duché, Q., Barbeau, E. J. & Parra, M. A. (2019) Refining understanding of working memory buffers through the construct of binding: Evidence from a single case informs theory and clinical practise. Cortex 112:3757. Available at: https://doi.org/10.1016/j.cortex.2018.08.011.Google Scholar
Kafkas, A., Migo, E. M., Morris, R. G., Kopelman, M. D., Montaldi, D. & Mayes, A. R. (2017) Material specificity drives medial temporal lobe familiarity but not hippocampal recollection. Hippocampus 27(2):194209. doi: 10.1002/hipo.22683.Google Scholar
Keane, M. M., Orlando, F. & Verfaellie, M. (2006) Increasing the salience of fluency cues reduces the recognition memory impairment in amnesia. Neuropsychologia 44(5):834–39.Google Scholar
Keene, C. S., Bladon, J., McKenzie, S., Liu, C. D., O'Keefe, J. & Eichenbaum, H. (2016) Complementary functional organization of neuronal activity patterns in the perirhinal, lateral entorhinal, and medial entorhinal cortices. Journal of Neuroscience 36(13):3660–75. doi: 10.1523/jneurosci.4368-15.2016.Google Scholar
Kelley, C. M. & Rhodes, M. G. (2002) Making sense and nonsense of experience: Attributions in memory and judgment. In: The psychology of learning and motivation: Advances in research and theory, vol. 41, ed. Ross, B. H., pp. 293320. Academic Press.Google Scholar
Kensinger, E. A. & Schacter, D. L. (2006) Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience 26(9):2564–70. doi: 10.1523/jneurosci.5241-05.2006.Google Scholar
Kent, B. A., Hvoslef-Eide, M., Saksida, L. M. & Bussey, T. J. (2016) The representational–hierarchical view of pattern separation: Not just hippocampus, not just space, not just memory? Neurobiology of Learning and Memory 129(Suppl. C):99106. Available at: https://doi.org/10.1016/j.nlm.2016.01.006.Google Scholar
Kim, H. (2010) Dissociating the roles of the default mode, dorsal, and ventral networks in episodic memory retrieval. NeuroImage 50:1648–57.Google Scholar
Kishiyama, M. M., Yonelinas, A. P. & Knight, R. T. (2009) Novelty enhancements in memory are dependent on lateral prefrontal cortex. Journal of Neuroscience 29(25):8114–18. doi: 10.1523/jneurosci.5507-08.2009.Google Scholar
Kivisaari, S. L., Monsch, A. U. & Taylor, K. I. (2013) False positives to confusable objects predict medial temporal lobe atrophy. Hippocampus 23(9):832–41. doi: 10.1002/hipo.22137.Google Scholar
Kivisaari, S. L., Tyler, L. K., Monsch, A. U. & Taylor, K. I. (2012) medial perirhinal cortex disambiguates confusable objects. Brain 135(Pt 12):3757–69. doi: 10.1093/brain/aws277.Google Scholar
Klein, S. B. & Nichols, S. (2012) Memory and the sense of personal identity. Mind 121(483):677702. doi: 10.1093/mind/fzs080.Google Scholar
Kobayashi, Y. & Amaral, D. G. (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. Journal of Comparative Neurology 466(1):4879. doi: 10.1002/cne.10883.Google Scholar
Koen, J. D. & Yonelinas, A. P. (2014) The effects of healthy aging, amnestic mild cognitive impairment, and Alzheimer's disease on recollection and familiarity: A meta-analytic review. Neuropsychological Review 24(3):332–54. doi: 10.1007/s11065-014-9266-5.Google Scholar
Kurilla, B. P. & Gonsalves, B. D. (2012) An ERP investigation into the strategic regulation of the fluency heuristic during recognition memory. Brain Research 1442:3646. doi: 10.1016/j.brainres.2011.12.060.Google Scholar
Kurilla, B. P. & Westerman, D. L. (2008) Processing fluency affects subjective claims of recollection. Memory & Cognition 36(1):8292.Google Scholar
Kurilla, B. P. & Westerman, D. L. (2010) Source memory for unidentified stimuli. Journal of Experimental Psychology: Learning, Memory, and Cognition 36(2):398410. doi: 10.1037/a0018279.Google Scholar
Lacot, E., Vautier, S., Kohler, S., Pariente, J., Martin, C. B., Puel, M., Lotterie, J. A. & Barbeau, E. J. (2017) Familiarity and recollection vs representational models of medial temporal lobe structures: A single-case study. Neuropsychologia 104:7691. doi: 10.1016/j.neuropsychologia.2017.07.032.Google Scholar
Lanska, M., Olds, J. M. & Westerman, D. L. (2014) Fluency effects in recognition memory: Are perceptual fluency and conceptual fluency interchangeable. Journal of Experimental Psychology: Learning, Memory, and Cognition 40(1):111. doi: 10.1037/a0034309.Google Scholar
LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K. & Wagner, A. D. (2013) Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience 33(13):5466–74. doi: 10.1523/JNEUROSCI.4293-12.2013.Google Scholar
Lavenex, P. & Amaral, D. G. (2000) Hippocampal-neocortical interaction: A hierarchy of associativity. Hippocampus 10:420–30.Google Scholar
Lavenex, P., Suzuki, W. A. & Amaral, D. G. (2002) Perirhinal and parahippocampal cortices of the macaque monkey: Projections to the neocortex. Journal of Comparative Neurology 447(4):394420. doi: 10.1002/cne.10243.Google Scholar
Leal, S. L. & Yassa, M. A. (2018) Integrating new findings and examining clinical applications of pattern separation. Nature Neuroscience 21(2):163–73. doi: 10.1038/s41593-017-0065-1.Google Scholar
Lee, A. C., Yeung, L. K. & Barense, M. D. (2012) The hippocampus and visual perception. Frontiers in Human Neuroscience 6: article 91. doi: 10.3389/fnhum.2012.00091.Google Scholar
Leech, R., Kamourieh, S., Beckmann, C. F. & Sharp, D. J. (2011) Fractionating the default mode network: Distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. Journal of Neuroscience 31(9):3217–24. doi: 10.1523/JNEUROSCI.5626-10.2011.Google Scholar
Leech, R. & Sharp, D. J. (2014) The role of the posterior cingulate cortex in cognition and disease. Brain 137:1232. doi: 10.1093/brain/awt162.Google Scholar
Lepage, M., Ghaffar, O., Nyberg, L. & Tulving, E. (2000) Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Sciences USA 97(1):506–11.Google Scholar
Levy, D. A., Stark, C. E. L. & Squire, L. R. (2004) Intact conceptual priming in the absence of declarative memory. Psychological Science 15(10):680–86. doi: 10.1111/j.0956-7976.2004.00740.x.Google Scholar
Li, B., Taylor, J. R., Wang, W., Gao, C. & Guo, C. (2017) Electrophysiological signals associated with fluency of different levels of processing reveal multiple contributions to recognition memory. Consciousness and Cognition 53:113. doi: 10.1016/j.concog.2017.05.001.Google Scholar
Libby, L. A., Ekstrom, A. D., Ragland, J. D. & Ranganath, C. (2012) Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. Journal of Neuroscience 32(19):6550–60. doi: 10.1523/JNEUROSCI.3711-11.2012.Google Scholar
Liuzzi, A. G., Bruffaerts, R., Dupont, P., Adamczuk, K., Peeters, R., De Deyne, S., Storms, G. & Vandenberghe, R. (2015) Left perirhinal cortex codes for similarity in meaning between written words: Comparison with auditory word input. Neuropsychologia 76:416. doi: 10.1016/j.neuropsychologia.2015.03.016.Google Scholar
Lucas, H. D. & Paller, K. A. (2013) Manipulating letter fluency for words alters electrophysiological correlates of recognition memory. NeuroImage 83:849–61. doi: 10.1016/j.neuroimage.2013.07.039.Google Scholar
Maass, A., Berron, D., Libby, L. A., Ranganath, C. & Düzel, E. (2015) Functional subregions of the human entorhinal cortex. eLife 4:e06426. doi: 10.7554/eLife.06426.Google Scholar
MacPherson, S. E., Bozzali, M., Cipolotti, L., Dolan, R. J., Rees, J. H. & Shallice, T. (2008) Effect of frontal lobe lesions on the recollection and familiarity components of recognition memory. Neuropsychologia 46(13):3124–32. doi: 10.1016/j.neuropsychologia.2008.07.003.Google Scholar
Madore, K. P., Thakral, P. P., Beaty, R. E., Addis, D. R. & Schacter, D. L. (2019) Neural mechanisms of episodic retrieval support divergent creative thinking. Cerebral Cortex 29(1):150–66. doi: 10.1093/cercor/bhx312.Google Scholar
Mahr, J. B. & Csibra, G. (2018) Why do we remember? The communicative function of episodic memory. Behavioral and Brain Sciences 41:e1. (Online publication). doi: 10.1017/S0140525X17000012.Google Scholar
Mandler, G. (1980) Recognizing: The judgement of previous occurence. Psychological Review 87(3):252–71.Google Scholar
Mandler, G., Pearlstone, Z. & Koopmans, H. S. (1969) Effects of organization and semantic similarity on recall and recognition. Journal of Verbal Learning and Verbal Behavior 8(3):410–23.Google Scholar
Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., Villringer, A., Castellanos, F. X., Milham, M. P. & Petrides, M. (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences USA 106(47):20069–74. doi: 10.1073/pnas.0905314106.Google Scholar
Martin, C. B., Cowell, R. A., Gribble, P. L., Wright, J. & Kohler, S. (2016) Distributed category-specific recognition-memory signals in human perirhinal cortex. Hippocampus 26(4):423–36. doi: 10.1002/hipo.22531.Google Scholar
Martin, C. B., Douglas, D., Newsome, R. N., Man, L. L. & Barense, M. D. (2018) Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream. eLife 7. Available at: https://elifesciences.org/articles/31873. doi: 10.7554/eLife.31873.Google Scholar
Martin, C. B., McLean, D. A., O'Neil, E. B. & Kohler, S. (2013) Distinct familiarity-based response patterns for faces and buildings in perirhinal and parahippocampal cortex. Journal of Neuroscience 33(26):10915–23. doi: 10.1523/JNEUROSCI.0126-13.2013.Google Scholar
Mayes, A., Montaldi, D. & Migo, E. (2007) Associative memory and the medial temporal lobes. Trends in Cognitive Sciences 11(3):126–35. doi: 10.1016/j.tics.2006.12.003.Google Scholar
McCabe, D. P. & Balota, D. A. (2007) Context effects on remembering and knowing: The expectancy heuristic. Journal of Experimental Psychology: Learning, Memory, and Cognition 33(3):536–49. doi: 10.1037/0278-7393.33.3.536.Google Scholar
Meyer, P., Mecklinger, A. & Friederici, A. D. (2010) On the processing of semantic aspects of experience in the anterior medial temporal lobe: An event-related fMRI study. Journal of Cognitive Neuroscience 22(3):590601. doi: 10.1162/jocn.2009.21199.Google Scholar
Miller, J. K., Lloyd, M. E. & Westerman, D. L. (2008) When does modality matter? Perceptual versus conceptual fluency-based illusions in recognition memory. Journal of Memory and Language 58(4):1080–94. Available at: http://dx.doi.org/10.1016/j.jml.2007.12.006.Google Scholar
Montaldi, D. & Mayes, A. R. (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20(11):1291–314.Google Scholar
Mutlu, J., Landeau, B., Tomadesso, C., de Flores, R., Mezenge, F., de La Sayette, V., Eustache, F. & Chételat, G. (2016) Connectivity disruption, atrophy, and hypometabolism within posterior cingulate networks in Alzheimer's disease. Frontiers in Neuroscience 10: article 582. doi: 10.3389/fnins.2016.00582.Google Scholar
Nestor, P. J., Fryer, T. D., Ikeda, M. & Hodges, J. R. (2003) Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer's disease). European Journal of Neuroscience 18(9):2663–67.Google Scholar
Newsome, R. N., Trelle, A. N., Fidalgo, C., Hong, B., Smith, V. M., Jacob, A., Ryan, J. D., Rosenbaum, R. S., Cowell, R. A. & Barense, M. D. (2018) Dissociable contributions of thalamic nuclei to recognition memory: Novel evidence from a case of medial dorsal thalamic damage. Learning and Memory 25(1):3144. doi: 10.1101/lm.045484.117.Google Scholar
Norman, K. A. & O'Reilly, R. C. (2003) Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review 110(4):611–46. Available at: https://doi.org/10.1037/0033-295X.110.4.611.Google Scholar
Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H. & Panksepp, J. (2006) Self-referential processing in our brain: A meta-analysis of imaing studies on the self. NeuroImage 31:440–57.Google Scholar
Olds, J. M. & Westerman, D. L. (2012) Can fluency be interpreted as novelty? Retraining the interpretation of fluency in recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition 38(3):653–64. doi: 10.1037/a0026784.Google Scholar
Oppenheimer, D. M. (2008) The secret life of fluency. Trends in Cognitive Sciences 12(6):237–41. doi: 10.1016/j.tics.2008.02.014.Google Scholar
Ozubko, J. D. & Yonelinas, A. P. (2014) The disruptive effects of processing fluency on familiarity-based recognition in amnesia. Neuropsychologia 54:5967. doi: 10.1016/j.neuropsychologia.2013.12.008.Google Scholar
Pannu, J. K. & Kaszniak, A. W. (2005) Metamemory experiments in neurological populations: A review. Neuropsychology Review 15(3):105–30.Google Scholar
Parks, C. M. & Yonelinas, A. P. (2007) Moving beyond pure signal-detection models: Comment on Wixted (2007) Psychological Review 114(1):188202.Google Scholar
Parks, C. M. & Yonelinas, A. P. (2015) The importance of unitization for familiarity-based learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 41(3):881903. doi: 10.1037/xlm0000068.Google Scholar
Parvizi, J., Van Hoesen, G. W., Buckwalter, J. & Damasio, A. (2006) Neural connections of the posteromedial cortex in the macaque. Proceedings of the National Academy of Sciences USA 103(5):1563–68. doi: 10.1073/pnas.0507729103.Google Scholar
Pengas, G., Hodges, J. R., Watson, P. & Nestor, P. J. (2010) Focal posterior cingulate atrophy in incipient Alzheimer's disease. Neurobiology of Aging 31(1):2533. doi: 10.1016/j.neurobiolaging.2008.03.014.Google Scholar
Pergola, G., Danet, L., Pitel, A. L., Carlesimo, G. A., Segobin, S., Pariente, J., Suchan, B., Mitchell, A. S. & Barbeau, E. J. (2018) The regulatory role of the human mediodorsal thalamus. Trends in Cognitive Sciences 22(11):1011–25. doi: 10.1016/j.tics.2018.08.006.Google Scholar
Petersen, R. C., Parisi, J. E., Dickson, D. W., Johnson, K. A., Knopman, D. S., Boeve, B. F., Jicha, G. A., Ivnik, R. J., Smith, G. E., Tangalos, E. G., Braak, H. & Kokmen, E. (2006) Neuropathologic features of amnestic mild cognitive impairment. Archives of Neurology 63(5):665–72. doi: 10.1001/archneur.63.5.665.Google Scholar
Preston, A. R., Bornstein, A. M., Hutchinson, J. B., Gaare, M. E., Glover, G. H. & Wagner, A. D. (2010) High-resolution fMRI of content-sensitive subsequent memory responses in human medial temporal lobe. Journal of Cognitive Neuroscience 22(1):156–73. doi: 10.1162/jocn.2009.21195.Google Scholar
Price, A. R., Bonner, M. F., Peelle, J. E. & Grossman, M. (2017) Neural coding of fine-grained object knowledge in perirhinal cortex. bioRxiv. Available at: https://www.biorxiv.org/content/10.1101/194829v1.abstract. (Online preprint publication). doi: 10.1101/194829.Google Scholar
Ranganath, C. (2010) A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. Hippocampus 20(11):1263–90. doi: 10.1002/hipo.20852.Google Scholar
Ranganath, C. & Ritchey, M. (2012) Two cortical systems for memory-guided behaviour. Nature Reviews: Neuroscience 13:115.Google Scholar
Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M. & D'Esposito, M. (2004) Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia 42(1):213.Google Scholar
Reber, P. J. (2013) The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia 51(10):2026–42. doi: 10.1016/j.neuropsychologia.2013.06.019.Google Scholar
Reber, R., Schwarz, N. & Winkielman, P. (2004a) Processing fluency and aesthetic pleasure: Is beauty in the perceiver's processing experience? Personality and Social Psychology Review 8(4):364–82. doi: 10.1207/s15327957pspr0804_3.Google Scholar
Rissman, J. & Wagner, A. D. (2012) Distributed representations in memory: Insights from functional brain imaging. Annual Review of Psychology 63:101–28. doi: 10.1146/annurev-psych-120710-100344.Google Scholar
Ritchey, M., Libby, L. A. & Ranganath, C. (2015) Cortico-hippocampal systems involved in memory and cognition: The PMAT framework. In: Progress in brain research, vol. 219, ed. O'Mara, S. & Tsanov, M., pp. 4564. Elsevier.Google Scholar
Rugg, M. D. & Vilberg, K. L. (2013) Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology 23(2):255–60. doi:10.1016/j.conb.2012.11.005.Google Scholar
Saksida, L. M. & Bussey, T. J. (2010) The representational-hierarchical view of amnesia: Translation from animal to human. Neuropsychologia 48(8):2370–84. doi: 10.1016/j.neuropsychologia.2010.02.026.Google Scholar
Salat, D. H., Kaye, J. A. & Janowsky, J. S. (2001) Selective preservation and degeneration within the prefrontal cortex in aging and Alzheimer disease. Archives of Neurology 58(9):1403–408.Google Scholar
Salmon, E., Lekeu, F., Garraux, G., Guillaume, B., Magis, D., Luxen, A., Moonen, G. & Collette, F. (2008) Metabolic correlates of clinical heterogeneity in questionable Alzheimer's disease. Neurobiology of Aging 29:1823–29.Google Scholar
Scahill, R. I., Schott, J. M., Stevens, J. M., Rossor, M. N. & Fox, N. C. (2002) Mapping the evolution of regional atrophy in Alzheimer's disease: Unbiaised analysis of fluid-registered serial MRI. Proceedings of the National Academy of Sciences USA 99(7):4703–707.Google Scholar
Schacter, D. L. (1997) False recognition and the brain. Current Directions in Psychological Science 6(3):6570.Google Scholar
Schoemaker, D., Gauthier, S. & Pruessner, J. C. (2014) Recollection and familiarity in aging individuals with mild cognitive impairment and Alzheimer's disease: A literature review. Neuropsychology Review 24(3):313–31. doi: 10.1007/s11065-014-9265-6.Google Scholar
Schultz, H., Sommer, T. & Peters, J. (2012) Direct evidence for domain-sensitive functional subregions in human entorhinal cortex. Journal of Neuroscience 32(14):4716–23. doi: 10.1523/jneurosci.5126-11.2012.Google Scholar
Schwarz, A. J., Yu, P., Miller, B. B., Shcherbinin, S., Dickson, J., Navitsky, M., Joshi, A. D., Devous, M. D. & Mintun, M. S. (2016) Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain 139(Pt 5):1539–50. doi: 10.1093/brain/aww023.Google Scholar
Schwarz, N. (2004) Metacognitive experiences in consumer judgment and decision making. Journal of Consumer Psychology 14(4):332–48. Available at: https://doi.org/10.1207/s15327663jcp1404_2.Google Scholar
Scoville, W. B. & Milner, B. (1957) Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry 20(1):1121.Google Scholar
Sohal, V. S. & Hasselmo, M. E. (2000) A model for experience-dependent changes in the responses of inferotemporal neurons. Network 11(3):169–90.Google Scholar
Squire, L. R., Wixted, J. T. & Clark, R. E. (2007) Recognition memory and the medial temporal lobe: A new perspective. Nature Reviews: Neuroscience 8(11):872–83. doi: 10.1038/nrn2154.Google Scholar
Stamenova, V., Gao, F., Black, S. E., Schwartz, M. L., Kovacevic, N., Alexander, M. P. & Levine, B. (2017) The effect of focal cortical frontal and posterior lesions on recollection and familiarity in recognition memory. Cortex 91:316–26. doi: 10.1016/j.cortex.2017.04.003.Google Scholar
Staresina, B. P., Cooper, E. & Henson, R. N. (2013) Reversible information flow across the medial temporal lobe: The hippocampus links cortical modules during memory retrieval. Journal of Neuroscience 33(35):14184–92. doi: 10.1523/jneurosci.1987-13.2013.Google Scholar
Staresina, B. P., Duncan, K. D. & Davachi, L. (2011) Perirhinal and parahippocampal cortices differentially contribute to later recollection of object- and scene-related event details. Journal of Neuroscience 31(24):8739–47. doi: 10.1523/jneurosci.4978-10.2011.Google Scholar
Staresina, B. P., Henson, R. N., Kriegeskorte, N. & Alink, A. (2012) Episodic reinstatement in the medial temporal lobe. Journal of Neuroscience 32(50):18150–56. doi: 10.1523/jneurosci.4156-12.2012.Google Scholar
Starkstein, S. E. (2014) Anosognosia in Alzheimer's disease: Diagnosis, frequency, mechanism and clinical correlates. Cortex 61:6473. doi: 10.1016/j.cortex.2014.07.019.Google Scholar
Suzuki, W. A. & Amaral, D. G. (1994) Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. Journal of Comparative Neurology 350(4):497533. doi: 10.1002/cne.903500402.Google Scholar
Taylor, J. R. & Henson, R. N. (2012b) You can feel it all over: Many signals potentially contribute to feelings of familiarity. Cognitive Neuroscience 3(3–4):209–10. doi: 10.1080/17588928.2012.689966.Google Scholar
Taylor, K. I., Devereux, B. J. & Tyler, L. K. (2011) Conceptual structure: Towards an integrated neuro-cognitive account. Language and Cognitive Processes 26(9):1368–401. doi: 10.1080/01690965.2011.568227.Google Scholar
Taylor, K. I. & Probst, A. (2008) Anatomic localization of the transentorhinal region of the perirhinal cortex. Neurobiology of Aging 29(10):1591–96. doi: 10.1016/j.neurobiolaging.2007.03.024.Google Scholar
Teyler, T. J. & Rudy, J. W. (2007) The hippocampal indexing theory and episodic memory: Updating the index. Hippocampus 17(12):1158–69. doi: 10.1002/hipo.20350.Google Scholar
Topolinski, S. (2012) The sensorimotor contributions to implicit memory, familiarity, and recollection. Journal of Experimental Psychology: General 141(2):260–81. doi: 10.1037/a0025658.Google Scholar
Tulving, E. (1985) Memory and consciousness. Canadian Psychology 26(1):112.Google Scholar
Tulving, E. (1999) On the uniqueness of episodic memory. In: Cognitive neuroscience of memory, ed. Nilsson, L. G. & Markowitsch, H. J., pp. 1142. Hogrefe & Huber.Google Scholar
Unkelbach, C. & Greifeneder, R. (2013) The experience of thinking: How the fluency of mental processes influences cognition and behavior. Psychology Press.Google Scholar
Valenstein, E., Bowers, D., Verfaellie, M., Heilman, K. M., Day, A. & Watson, R. T. (1987) Retrosplenial amnesia. Brain 110 (Pt 6):1631–46.Google Scholar
van den Heuvel, M. P. & Sporns, O. (2013) Network hubs in the human brain. Trends in Cognitive Sciences 17(12):683–96. doi: 10.1016/j.tics.2013.09.012.Google Scholar
Vann, S. D., Aggleton, J. P. & Maguire, E. A. (2009a) What does the retrosplenial cortex do? Nature Reviews: Neuroscience 10(11):792802. doi: 10.1038/nrn2733.Google Scholar
Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J. & Stamatakis, E. A. (2015) Default mode dynamics for global functional integration. Journal of Neuroscience 35(46):15254–62. doi: 10.1523/JNEUROSCI.2135-15.2015.Google Scholar
Verfaellie, M. & Cermak, L. S. (1999) Perceptual fluency as a cue for recognition judgments in amnesia. Neuropsychology 13(2):198205.Google Scholar
Villain, N., Desgranges, B., Viader, F., de la Sayette, V., Mezenge, F., Landeau, B., Baron, J. C., Eustache, F. & Chételat, G. (2008) Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer's disease. Journal of Neuroscience 28(24):6174–81. doi: 10.1523/jneurosci.1392-08.2008.Google Scholar
Vogt, B. A. & Laureys, S. (2005) Posterior cingulate, precuneal and retrosplenial cortices: Cytology and components of the neural network correlates of consciousness. Progress in Brain Research 150:205–17. doi: 10.1016/s0079-6123(05)50015-3.Google Scholar
Vogt, B. A. & Pandya, D. N. (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. Journal of Comparative Neurology 262(2):271–89. doi: 10.1002/cne.902620208.Google Scholar
Vogt, B. A., Pandya, D. N. & Rosene, D. L. (1987) Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. Journal of Comparative Neurology 262(2):256–70. doi: 10.1002/cne.902620207.Google Scholar
Vogt, B. A., Vogt, L. & Laureys, S. (2006) Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage 29(2):452–66. doi: 10.1016/j.neuroimage.2005.07.048.Google Scholar
Voss, J. L., Lucas, H. D. & Paller, K. A. (2012) More than a feeling: Pervasive influences of memory without awareness of retrieval. Cognitive Neuroscience 3(3–4):193207. doi: 10.1080/17588928.2012.674935.Google Scholar
Wang, W. C., Yonelinas, A. P. & Ranganath, C. (2013) Dissociable neural correlates of item and context retrieval in the medial temporal lobes. Behavioural Brain Research 254:102107. doi: 10.1016/j.bbr.2013.05.029.Google Scholar
Westerman, D. L. (2008) Relative fluency and illusions of recognition memory. Psychonomic Bulletin and Review 15(6):1196–200. doi: 10.3758/PBR.15.6.1196Google Scholar
Westerman, D. L., Lloyd, M. E. & Miller, J. K. (2002) The attribution of perceptual fluency in recognition memory: The role of expectation. Journal of Memory and Language 47:607–17.Google Scholar
Wheeler, M. A. & Stuss, D. T. (2003) Remembering and knowing in patients with frontal lobe injuries. Cortex 39:827–46.Google Scholar
Whittlesea, B. W. (2002) Two routes to remembering (and another to remembering not). Journal of Experiment Psychology: General 131(3):325–48.Google Scholar
Whittlesea, B. W. & Price, J. R. (2001) Implicit/explicit memory versus analytic/nonanalytic processing: Rethinking the mere exposure effect. Memory & Cognition 29(2):234–46.Google Scholar
Whittlesea, B. W. & Williams, L. D. (2000) The source of feelings of familiarity: The discrepancy-attribution hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition 26(3):547–65.Google Scholar
Whittlesea, B. W. & Williams, L. D. (2001a) The discrepancy-attribution hypothesis: I. The heuristic basis of feelings of familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition 27(1):313.Google Scholar
Whittlesea, B. W. & Williams, L. D. (2001b) The discrepancy-attribution hypothesis: II. Expectation, uncertainty, surprise, and feelings of familiarity. Journal of Experimental Psychology: Learning, Memory, and Cognition 27(1):1433.Google Scholar
Whittlesea, B. W. A. (1997) Production, evaluation, and preservation of experiences: Constructive processing in remembering and performance tasks. In: The psychology of learning and motivation: Advances in research and theory, vol. 37, ed. Medin, D. L., pp. 211–64. Academic Press.Google Scholar
Whittlesea, B. W. A., Jacoby, L. L. & Girard, K. (1990) Illusions of immediate memory: Evidence of an attributional basis for feelings of familiarity and perceptual quality. Journal of Memory and Language 29(6):716–32. Available at: https://doi.org/10.1016/0749-596X(90)90045-2.Google Scholar
Willems, S., Salmon, E. & Van der Linden, M. (2008) Implicit/explicit memory dissociation in Alzheimer's disease: The consequence of inappropriate processing? Neuropsychology 22(6):710–17.Google Scholar
Willems, S. & Van der Linden, M. (2006) Mere exposure effect: A consequence of direct and indirect fluency–preference links. Consciousness and Cognition 15(2):323–41. doi: 10.1016/j.concog.2005.06.008.Google Scholar
Willems, S., van der Linden, M. & Bastin, C. (2007) The contribution of processing fluency to preference: A comparison with familiarity-based recognition. European Journal of Cognitive Psychology 19(1):119–40. doi: 10.1080/09541440600604248.Google Scholar
Wixted, J. T. & Mickes, L. (2010) A continuous dual-process model of remember/know judgments. Psychological Review 117(4):1025–54.Google Scholar
Wixted, J. T. & Squire, L. R. (2011) The medial temporal lobe and the attributes of memory. Trends in Cognitive Sciences 15(5):210–17. doi: 10.1016/j.tics.2011.03.005.Google Scholar
Wolk, D. A., Schacter, D. L., Berman, A. R., Holcomb, P. J., Daffner, K. R. & Budson, A. E. (2004) An electrophysiological investigation of the relationship between conceptual fluency and familiarity. Neuroscience Letters 369(2):150–55. doi: 10.1016/j.neulet.2004.07.081.Google Scholar
Wong, S., Irish, M., Leshikar, E. D., Duarte, A., Bertoux, M., Savage, G., Hodges, J. R., Piguet, O. & Hornberger, M. (2017) The self-reference effect in dementia: Differential involvement of cortical midline structures in Alzheimer's disease and behavioural-variant frontotemporal dementia. Cortex 91:169–85. doi: 10.1016/j.cortex.2016.09.013.Google Scholar
Wright, P., Randall, B., Clarke, A. & Tyler, L. K. (2015) The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia 76:192207. doi: 10.1016/j.neuropsychologia.2015.01.041.Google Scholar
Yeung, L.-K., Olsen, R. K., Bild-Enkin, H. E. P., D'Angelo, M. C., Kacollja, A., McQuiggan, D. A., Keshabyan, A., Ryan, J. D. & Barense, M. D. (2017) Anterolateral entorhinal cortex volume predicted by altered intra-item configural processing. Journal of Neuroscience 37(22):5527–38. doi: 10.1523/JNEUROSCI.3664-16.2017.Google Scholar
Yeung, L.-K., Olsen, R. K., Hong, B., Mihajlovic, V., D'Angelo, M. C., Kacollja, A., Ryan, J. D. & Barense, M. D. (2019) Object-in-place memory predicted by anterolateral entorhinal cortex and parahippocampal cortex volume in older adults. Journal of Cognitive Neuroscience 31(5):711–29. doi: 10.1101/409607.Google Scholar
Yeung, L. K., Ryan, J. D., Cowell, R. A. & Barense, M. D. (2013) Recognition memory impairments caused by false recognition of novel objects. Journal of Experimental Psychology: General 142(4):1384–97. doi: 10.1037/a0034021.Google Scholar
Yonelinas, A. P. (1994) Receiver-operating characteristics in recognition memory: Evidence for a dual-process model. Journal of Experimental Psychology: Learning, Memory, and Cognition 20(6):1341–54.Google Scholar
Yonelinas, A. P. (2013) The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioral Brain Research 254:3444. Available at: https://doi.org/10.1016/J.BBR.2013.05.030.Google Scholar
Yonelinas, A. P., Aly, M., Wang, W. C. & Koen, J. D. (2010) Recollection and familiarity: Examining controversial assumptions and new directions. Hippocampus 20(11):1178–94. doi: 10.1002/hipo.20864.Google Scholar