Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T04:49:44.710Z Has data issue: false hasContentIssue false

Measuring teaching through hormones and time series analysis: Towards a comparative framework1

Published online by Cambridge University Press:  08 June 2015

Andrea Ravignani
Affiliation:
Department of Cognitive Biology, University of Vienna, A-1090 Vienna, Austria. andrea.ravignani@gmail.comruth-sophie.sonnweber@univie.ac.athttp://homepage.univie.ac.at/andrea.ravignanihttps://www.researchgate.net/profile/Ruth_Sonnweber
Ruth Sonnweber
Affiliation:
Department of Cognitive Biology, University of Vienna, A-1090 Vienna, Austria. andrea.ravignani@gmail.comruth-sophie.sonnweber@univie.ac.athttp://homepage.univie.ac.at/andrea.ravignanihttps://www.researchgate.net/profile/Ruth_Sonnweber

Abstract

Arguments about the nature of teaching have depended principally on naturalistic observation and some experimental work. Additional measurement tools, and physiological variations and manipulations can provide insights on the intrinsic structure and state of the participants better than verbal descriptions alone: namely, time-series analysis, and examination of the role of hormones and neuromodulators on the behaviors of teacher and pupil.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1.

Andrea Ravignani and Ruth Sonnweber contributed equally to this commentary as joint first authors.

References

Alt, H. & Godau, M. (1995) Computing the Fréchet distance between two polygonal curves. International Journal of Computational Geometry and Applications 5(1–2):7591.Google Scholar
Baccalá, L. A. & Sameshima, K. (2001) Partial directed coherence: A new concept in neural structure determination. Biological Cybernetics 84(6):463–74.Google Scholar
Ball, G. F., Riters, L. V. & Balthazart, J. (2002) Neuroendocrinology of song behavior and avian brain plasticity: Multiple sites of action of sex steroid hormones. Frontiers in Neuroendocrinology 23(2):137–78.CrossRefGoogle ScholarPubMed
Bjorklund, D. F. (2006) Mother knows best: Epigenetic inheritance, maternal effects, and the evolution of human intelligence. Developmental Review 26(2):213–42.CrossRefGoogle Scholar
Boesch, C. (1991) Teaching among wild chimpanzees. Animal Behaviour 41(3):530–32.Google Scholar
Bos, P. A., Panksepp, J., Bluthe, R.-M. & van Honk, J. (2012) Acute effects of steroid hormones and neuropeptides on human social-emotional behavior: A review of single administration studies. Frontiers in Neuroendocrinology 33(1):1735.CrossRefGoogle ScholarPubMed
Crockford, C., Deschner, T., Ziegler, T. E. & Wittig, R. M. (2014) Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: A review. Frontiers in Behavioral Neuroscience 8:114.Google Scholar
Dore, R., Phan, A., Clipperton-Allen, A. E. & Kavaliers, M. (2013) The involvement of oxytocin and vasopressin in social recognition and social learning. In: Oxytocin, vasopressin and related peptides in the regulation of behavior, ed. Choleris, E., Pfaff, D. W. & Kavaliers, M., pp. 232255. Cambridge University Press.CrossRefGoogle Scholar
Fries, A. B. W., Ziegler, T. E., Kurian, J. R., Jacoris, S. & Pollak, S. D. (2005) Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proceedings of the National Academy of Sciences USA 102(47):17237–40.CrossRefGoogle Scholar
Fuhrmann, D., Ravignani, A., Marshall-Pescini, S. & Whiten, A. (2014) Synchrony and motor mimicking in chimpanzee observational learning. Scientific Reports 4(5283):17.CrossRefGoogle ScholarPubMed
Ghazanfar, A. A., Takahashi, D. Y., Mathur, N. & Fitch, W. T. (2012) Cineradiography of monkey lip-smacking reveals putative precursors of speech dynamics. Current Biology 22(13):1176–82.Google Scholar
Gower, J. C. (1975) Generalized procrustes analysis. Psychometrika 40(1):3351.CrossRefGoogle Scholar
Granger, C. W. (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society 37(3):424–38.Google Scholar
Heinrichs, M., von Dawans, B. & Domes, G. (2009) Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology 30(4):548–57.Google Scholar
Insel, T. R. (2010) The challenge of translation in social neuroscience: A review of oxytocin, vasopressin, and affiliative behavior. Neuron 65(6):768–79.CrossRefGoogle ScholarPubMed
Israel, S., Lerer, E., Shalev, I., Uzefovsky, F., Reibold, M., Bachner-Melman, R., Granot, R., Bornstein, G., Knafo, A. & Yirmiya, N. (2008) Molecular genetic studies of the arginine vasopressin 1a receptor (AVPR1a) and the oxytocin receptor (OXTR) in human behaviour: From autism to altruism with some notes in between. Progress in Brain Research 170:435–49.Google Scholar
Knafo, A., Israel, S., Darvasi, A., Bachner-Melman, R., Uzefovsky, F., Cohen, L., Feldman, E., Lerer, E., Laiba, E. & Raz, Y. (2008) Individual differences in allocation of funds in the dictator game associated with length of the arginine vasopressin 1a receptor RS3 promoter region and correlation between RS3 length and hippocampal mRNA. Genes, Brain and Behavior 7(3):266–75.CrossRefGoogle ScholarPubMed
Kozorovitskiy, Y., Hughes, M., Lee, K. & Gould, E. (2006) Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nature Neuroscience 9(9):1094–95.Google Scholar
McCall, C. & Singer, T. (2012) The animal and human neuroendocrinology of social cognition, motivation and behavior. Nature Neuroscience 15(5):681–88.CrossRefGoogle ScholarPubMed
Mehta, P. H. & Josephs, R. A. (2012) Social endocrinology: Hormones and social motivation: Psychology Press/Taylor & Francis Group.Google Scholar
Nagasaka, Y., Chao, Z. C., Hasegawa, N., Notoya, T. & Fujii, N. (2013) Spontaneous synchronization of arm motion between Japanese macaques. Scientific Reports 3(1151):17.Google Scholar
Porges, S. W. (2001) The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology 42(2):123–46.Google Scholar
Ragen, B. J. & Bales, K. L. (2012) Oxytocin and vasopressin in non-human primates. In: Oxytocin, vasopressin and related peptides in the regulation of behavior, ed. Choleris, E., Pfaff, D. W. & Kavaliers, M., pp. 288308. Cambridge University Press.Google Scholar
Ravignani, A., Olivera, V. M., Gingras, B., Hofer, R., Hernández, C. R., Sonnweber, R.-S. & Fitch, W. T. (2013) Primate drum kit: A system for studying acoustic pattern production by non-human primates using acceleration and strain sensors. Sensors 13(8):9790–820.Google Scholar
Seth, A. K. (2010) A MATLAB toolbox for Granger causal connectivity analysis. Journal of Neuroscience Methods 186(2):262–73.Google Scholar
Soares, M. C., Bshary, R., Fusani, L., Goymann, W., Hau, M., Hirschenhauser, K. & Oliveira, R. F. (2010) Hormonal mechanisms of cooperative behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1553):2737–50.Google Scholar
van Anders, S. M., Goldey, K. L. & Kuo, P. X. (2011) The steroid/peptide theory of social bonds: Integrating testosterone and peptide responses for classifying social behavioral contexts. Psychoneuroendocrinology 36(9):1265–75.Google Scholar
Verhoef, T., Kirby, S. & de Boer, B. (2014) Emergence of combinatorial structure and economy through iterated learning with continuous acoustic signals. Journal of Phonetics 43:5768.CrossRefGoogle Scholar
Winslow, J. T., Noble, P. L., Lyons, C. K., Sterk, S. M. & Insel, T. R. (2003) Rearing effects on cerebrospinal fluid oxytocin concentration and social buffering in rhesus monkeys. Neuropsychopharmacology 28(5):910–18.Google Scholar