We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Multiples zeta values and alternating multiple zeta values in positive characteristic were introduced by Thakur and Harada as analogues of classical multiple zeta values of Euler and Euler sums. In this paper, we determine all linear relations between alternating multiple zeta values and settle the main goals of these theories. As a consequence, we completely establish Zagier–Hoffman’s conjectures in positive characteristic formulated by Todd and Thakur which predict the dimension and an explicit basis of the span of multiple zeta values of Thakur of fixed weight.
The deepest arithmetic invariants attached to an algebraic variety defined over a number field $F$ are conjecturally captured by the integral part of its motivic cohomology. There are essentially two ways of defining it when $X$ is a smooth projective variety: one is via the $K$-theory of a regular integral model, the other is through its $\ell$-adic realization. Both approaches are conjectured to coincide. This paper initiates the study of motivic cohomology for global fields of positive characteristic, hereafter named $A$-motivic cohomology, where classical mixed motives are replaced by mixed Anderson $A$-motives. Our main objective is to set the definitions of the integral part and the good$\ell$-adic part of the $A$-motivic cohomology using Gardeyn's notion of maximal models as the analogue of regular integral models of varieties. Our main result states that the integral part is contained in the good$\ell$-adic part. As opposed to what is expected in the number field setting, we show that the two approaches do not match in general. We conclude this work by introducing the submodule of regulated extensions of mixed Anderson $A$-motives, for which we expect the two approaches to match, and solve some particular cases of this expectation.
A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erdős, Sárközy and Sós asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.
We prove the geometric Satake equivalence for étale metaplectic covers of reductive group schemes and extend the Langlands parametrization of V. Lafforgue to genuine cusp forms defined on their associated covering groups.
We prove a large finite field version of the Boston–Markin conjecture on counting Galois extensions of the rational function field with a given Galois group and the smallest possible number of ramified primes. Our proof involves a study of structure groups of (direct products of) racks.
We study the Galois module structure of the class groups of the Artin–Schreier extensions K over k of extension degree p, where $k:={\mathbb F}_q(T)$ is the rational function field and p is a prime number. The structure of the p-part $Cl_K(p)$ of the ideal class group of K as a finite G-module is determined by the invariant ${\lambda }_n$, where $G:=\operatorname {\mathrm {Gal}}(K/k)=\langle {\sigma } \rangle $ is the Galois group of K over k, and ${\lambda }_n = \dim _{{\mathbb F}_p}(Cl_K(p)^{({\sigma }-1)^{n-1}}/Cl_K(p)^{({\sigma }-1)^{n}})$. We find infinite families of the Artin–Schreier extensions over k whose ideal class groups have guaranteed prescribed ${\lambda }_n$-rank for $1 \leq n \leq 3$. We find an algorithm for computing ${\lambda }_3$-rank of $Cl_K(p)$. Using this algorithm, for a given integer $t \ge 2$, we get infinite families of the Artin–Schreier extensions over k whose ${\lambda }_1$-rank is t, ${\lambda }_2$-rank is $t-1$, and ${\lambda }_3$-rank is $t-2$. In particular, in the case where $p=2$, for a given positive integer $t \ge 2$, we obtain an infinite family of the Artin–Schreier quadratic extensions over k whose $2$-class group rank (resp. $2^2$-class group rank and $2^3$-class group rank) is exactly t (resp. $t-1$ and $t-2$). Furthermore, we also obtain a similar result on the $2^n$-ranks of the divisor class groups of the Artin–Schreier quadratic extensions over k.
In this paper, we study multiple zeta values (abbreviated as MZV’s) over function fields in positive characteristic. Our main result is to prove Thakur’s basis conjecture, which plays the analogue of Hoffman’s basis conjecture for real MZV’s. As a consequence, we derive Todd’s dimension conjecture, which is the analogue of Zagier’s dimension conjecture for classical real MZV’s.
Let $\ell $ and p be (not necessarily distinct) prime numbers and F be a global function field of characteristic $\ell $ with field of constants $\kappa $. Assume that there exists a prime $P_\infty $ of F which has degree $1$ and let $\mathcal {O}_F$ be the subring of F consisting of functions with no poles away from $P_\infty $. Let $f(X)$ be a polynomial in X with coefficients in $\kappa $. We study solutions to Diophantine equations of the form $Y^{n}=f(X)$ which lie in $\mathcal {O}_F$ and, in particular, show that if m and $f(X)$ satisfy additional conditions, then there are no nonconstant solutions. The results apply to the study of solutions to $Y^{n}=f(X)$ in certain rings of integers in $\mathbb {Z}_{p}$-extensions of F known as constant$\mathbb {Z}_p$-extensions. We prove similar results for solutions in the polynomial ring $K[T_1, \ldots , T_r]$, where K is any field of characteristic $\ell $, showing that the only solutions must lie in K. We apply our methods to study solutions of Diophantine equations of the form $Y^n=\sum _{i=1}^d (X+ir)^m$, where $m,n, d\geq 2$ are integers.
We prove that there is a positive proportion of L-functions associated to cubic characters over $\mathbb F_q[T]$ that do not vanish at the critical point $s=1/2$. This is achieved by computing the first mollified moment using techniques previously developed by the authors in their work on the first moment of cubic L-functions, and by obtaining a sharp upper bound for the second mollified moment, building on work of Lester and Radziwiłł, which in turn develops further ideas from the work of Soundararajan, Harper and Radziwiłł. We work in the non-Kummer setting when $q\equiv 2 \,(\mathrm {mod}\,3)$, but our results could be translated into the Kummer setting when $q\equiv 1\,(\mathrm {mod}\,3)$ as well as into the number-field case (assuming the generalised Riemann hypothesis). Our positive proportion of nonvanishing is explicit, but extremely small, due to the fact that the implied constant in the upper bound for the mollified second moment is very large.
Let
$\mathbb {F}_q$
be the finite field of q elements. In this paper, we study the vanishing behavior of multizeta values over
$\mathbb {F}_q[t]$
at negative integers. These values are analogs of the classical multizeta values. At negative integers, they are series of products of power sums
$S_d(k)$
which are polynomials in t. By studying the t-valuation of
$S_d(s)$
for
$s < 0$
, we show that multizeta values at negative integers vanish only at trivial zeros. The proof is inspired by the idea of Sheats in the proof of a statement of “greedy element” by Carlitz.
Let
$ (G_n)_{n=0}^{\infty } $
be a nondegenerate linear recurrence sequence whose power sum representation is given by
$ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $
. We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions,
$ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $
for
$ n $
large enough.
We investigate the density of square-free values of polynomials with large coefficients over the rational function field 𝔽q[t]. Some interesting questions answered as special cases of our results include the density of square-free polynomials in short intervals, and an asymptotic for the number of representations of a large polynomial N as a sum of a k-th power of a small polynomial and a square-free polynomial.
In this paper, we formulate and prove a duality for cohomology of curves over perfect fields of positive characteristic with coefficients in Néron models of abelian varieties. This is a global function field version of the author’s previous work on local duality and Grothendieck’s duality conjecture. It generalizes the perfectness of the Cassels–Tate pairing in the finite base field case. The proof uses the local duality mentioned above, Artin–Milne’s global finite flat duality, the nondegeneracy of the height pairing and finiteness of crystalline cohomology. All these ingredients are organized under the formalism of the rational étale site developed earlier.
For every affine variety over a global function field, we show that the set of its points with coordinates in an arbitrary rank-one multiplicative subgroup of this function field satisfies the required property of weak approximation for finite sets of places of this function field avoiding arbitrarily given finitely many places.
Colmez [Périodes des variétés abéliennes a multiplication complexe, Ann. of Math. (2)138(3) (1993), 625–683; available at http://www.math.jussieu.fr/∼colmez] conjectured a product formula for periods of abelian varieties over number fields with complex multiplication and proved it in some cases. His conjecture is equivalent to a formula for the Faltings height of CM abelian varieties in terms of the logarithmic derivatives at $s=0$ of certain Artin $L$-functions. In a series of articles we investigate the analog of Colmez’s theory in the arithmetic of function fields. There abelian varieties are replaced by Drinfeld modules and their higher-dimensional generalizations, so-called $A$-motives. In the present article we prove the product formula for the Carlitz module and we compute the valuations of the periods of a CM $A$-motive at all finite places in terms of Artin $L$-series. The latter is achieved by investigating the local shtukas associated with the $A$-motive.
We explicitly find regulators of an infinite family $\{{{L}_{m}}\}$ of the simplest quartic function fields with a parameter $m$ in a polynomial ring ${{\mathbb{F}}_{q}}\left( t \right)$, where ${{\mathbb{F}}_{q}}$ is the finite field of order $q$ with odd characteristic. In fact, this infinite family of the simplest quartic function fields are subfields of maximal real subfields of cyclotomic function fields having the same conductors. We obtain a lower bound on the class numbers of the family $\{{{L}_{m}}\}$ and some result on the divisibility of the divisor class numbers of cyclotomic function fields that contain $\{{{L}_{m}}\}$ as their subfields. Furthermore, we find an explicit criterion for the characterization of splitting types of all the primes of the rational function field ${{\mathbb{F}}_{q}}\left( t \right)$ in $\{{{L}_{m}}\}$.
Boston, Bush and Hajir have developed heuristics, extending the Cohen–Lenstra heuristics, that conjecture the distribution of the Galois groups of the maximal unramified pro-$p$ extensions of imaginary quadratic number fields for $p$ an odd prime. In this paper, we find the moments of their proposed distribution, and further prove there is a unique distribution with those moments. Further, we show that in the function field analog, for imaginary quadratic extensions of $\mathbb{F}_{q}(t)$, the Galois groups of the maximal unramified pro-$p$ extensions, as $q\rightarrow \infty$, have the moments predicted by the Boston, Bush and Hajir heuristics. In fact, we determine the moments of the Galois groups of the maximal unramified pro-odd extensions of imaginary quadratic function fields, leading to a conjecture on Galois groups of the maximal unramified pro-odd extensions of imaginary quadratic number fields.
In this paper, we investigate examples of good and optimal Drinfeld modular towers of function fields. Surprisingly, the optimality of these towers has not been investigated in full detail in the literature. We also give an algorithmic approach for obtaining explicit defining equations for some of these towers and, in particular, give a new explicit example of an optimal tower over a quadratic finite field.
Let $\psi$ be a generic Drinfeld module of rank $r\,\ge \,2$. We study the first elementary divisor ${{d}_{1,\,\wp }}\,\left( \psi\right)$ of the reduction of $\psi$ modulo a prime $\wp $, as $\wp $ varies. In particular, we prove the existence of the density of the primes $\wp $ for which ${{d}_{1,\,\wp }}\,\left( \psi\right)$ is fixed. For $r\,=\,2$, we also study the second elementary divisor (the exponent) of the reduction of $\psi$ modulo $\wp $ and prove that, on average, it has a large norm. Our work is motivated by J.-P. Serre's study of an elliptic curve analogue of Artin's Primitive Root Conjecture, and, moreover, by refinements to Serre's study developed by the first author and M. R. Murty.
In this article we explain how the results in our previous article on ‘algebraic Hecke characters and compatible systems of mod $p$ Galois representations over global fields’ allow one to attach a Hecke character to every cuspidal Drinfeld modular eigenform from its associated crystal that was constructed in earlier work of the author. On the technical side, we prove along the way a number of results on endomorphism rings of ${\it\tau}$-sheaves and crystals. These are needed to exhibit the close relation between Hecke operators as endomorphisms of crystals on the one side and Frobenius automorphisms acting on étale sheaves associated to crystals on the other. We also present some partial results on the ramification of Hecke characters associated to Drinfeld modular eigenforms. An important phenomenon absent from the case of classical modular forms is that ramification can also result from places of modular curves of good but non-ordinary reduction. In an appendix, jointly with Centeleghe we prove some basic results on $p$-adic Galois representations attached to $\text{GL}_{2}$-type cuspidal automorphic forms over global fields of characteristic $p$.