We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a finite group and r be a prime divisor of the order of G. An irreducible character of G is said to be quasi r-Steinberg if it is non-zero on every r-regular element of G. A quasi r-Steinberg character of degree $\displaystyle |Syl_r(G)|$ is said to be weak r-Steinberg if it vanishes on the r-singular elements of $G.$ In this article, we classify the quasi r-Steinberg cuspidal characters of the general linear group $GL(n,q).$ Then we characterize the quasi r-Steinberg characters of $GL(2,q)$ and $GL(3,q).$ Finally, we obtain a classification of the weak r-Steinberg characters of $GL(n,q).$
We prove a result that relates the number of homomorphisms from the fundamental group of a compact nonorientable surface to a finite group G, where conjugacy classes of the boundary components of the surface must map to prescribed conjugacy classes in G, to a sum over values of irreducible characters of G weighted by Frobenius-Schur multipliers. The proof is structured so that the corresponding results for closed and possibly orientable surfaces, as well as some generalizations, are derived using the same methods. We then apply these results to the specific case of the symmetric group.
We settle the question of where exactly do the reduced Kronecker coefficients lie on the spectrum between the Littlewood-Richardson and Kronecker coefficients by showing that every Kronecker coefficient of the symmetric group is equal to a reduced Kronecker coefficient by an explicit construction. This implies the equivalence of an open problem by Stanley from 2000 and an open problem by Kirillov from 2004 about combinatorial interpretations of these two families of coefficients. Moreover, as a corollary, we deduce that deciding the positivity of reduced Kronecker coefficients is ${\textsf {NP}}$-hard, and computing them is ${{{\textsf {#P}}}}$-hard under parsimonious many-one reductions. Our proof also provides an explicit isomorphism of the corresponding highest weight vector spaces.
Let G be a finite group and let $\chi $ be an irreducible character of G. The number $|G:\mathrm {ker}\chi |/\chi (1)$ is called the codegree of the character $\chi $. We provide several relations between the structure of G and the codegrees of the characters in a given subset of $\mathrm {Irr}(G)$, where $\mathrm {Irr}(G)$ is the set of all complex irreducible characters of G. For example, we show that if the codegrees of all strongly monolithic characters of G are odd, then G is solvable, analogous to the well-known fact that if all irreducible character degrees of a finite group are odd, then that group is solvable.
In this article, we study rational matrix representations of VZ p-groups (p is any prime). Using our findings on VZ p-groups, we explicitly obtain all inequivalent irreducible rational matrix representations of all p-groups of order $\leq p^4$. Furthermore, we establish combinatorial formulae to determine the Wedderburn decompositions of rational group algebras for VZ p-groups and all p-groups of order $\leq p^4$, ensuring simplicity in the process.
Let G be a finite solvable group. We prove that if $\chi\in{{\operatorname{Irr}}}(G)$ has odd degree and $\chi(1)$ is the minimal degree of the nonlinear irreducible characters of G, then $G/\operatorname{Ker}\chi$ is nilpotent-by-abelian.
Let $\Gamma $ be a finite group, let $\theta $ be an involution of $\Gamma $ and let $\rho $ be an irreducible complex representation of $\Gamma $. We bound ${\operatorname {dim}} \rho ^{\Gamma ^{\theta }}$ in terms of the smallest dimension of a faithful $\mathbb {F}_p$-representation of $\Gamma /\operatorname {\mathrm {Rad}}_p(\Gamma )$, where p is any odd prime and $\operatorname {\mathrm {Rad}}_p(\Gamma )$ is the maximal normal p-subgroup of $\Gamma $.
This implies, in particular, that if $\mathbf {G}$ is a group scheme over $\mathbb {Z}$ and $\theta $ is an involution of $\mathbf {G}$, then the multiplicity of any irreducible representation in $C^\infty \left( \mathbf {G}(\mathbb {Z}_p)/ \mathbf {G} ^{\theta }(\mathbb {Z}_p) \right)$ is bounded, uniformly in p.
Let G be a finite group and $\mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $\chi \in \mathrm {Irr}(G)$ as $\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$ and let $\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$ be the codegree set of G. Let $\mathrm {A}_n$ be an alternating group of degree $n \ge 5$. We show that $\mathrm {A}_n$ is determined up to isomorphism by $\operatorname {cod}(\mathrm {A}_n)$.
We study the zero-sharing behavior among irreducible characters of a finite group. For symmetric groups $\mathsf {S}_n$, it is proved that, with one exception, any two irreducible characters have at least one common zero. To further explore this phenomenon, we introduce the common-zero graph of a finite group G, with nonlinear irreducible characters of G as vertices, and edges connecting characters that vanish on some common group element. We show that for solvable and simple groups, the number of connected components of this graph is bounded above by three. Lastly, the result for $\mathsf {S}_n$ is applied to prove the nonequivalence of the metrics on permutations induced from faithful irreducible characters of the group.
In 1968, Steinberg [Endomorphisms of Linear Algebraic Groups, Memoirs of the American Mathematical Society, 80 (American Mathematical Society, Providence, RI, 1968)] proved a theorem stating that the exterior powers of an irreducible reflection representation of a Euclidean reflection group are again irreducible and pairwise nonisomorphic. We extend this result to a more general context where the inner product invariant under the group action may not necessarily exist.
Assume that G is a finite group, N is a nontrivial normal subgroup of G and p is an odd prime. Let $\mathrm{Irr}_p(G)=\{\chi \in \mathrm{Irr}(G) : \chi (1)=1~\mathrm{or}~ p \mid \chi (1)\}$ and $\mathrm{Irr}_p(G|N)=\{\chi \in \mathrm{Irr}_p(G) : N \not \leq \mathrm{ker}\,\chi \}$. The average character degree of irreducible characters of $\mathrm{Irr}_p(G)$ and the average character degree of irreducible characters of $\mathrm{Irr}_p(G|N)$ are denoted by $\mathrm{acd}_p(G)$ and $\mathrm{acd}_p(G|N)$, respectively. We show that if $\mathrm{Irr}_p(G|N) \neq \emptyset $ and $\mathrm{acd}_p(G|N) < \mathrm{acd}_p(\mathrm{PSL}_2(p))$, then G is p-solvable and $O^{p'}(G)$ is solvable. We find examples that make this bound best possible. Moreover, we see that if $\mathrm{Irr}_p(G|N) = \emptyset $, then N is p-solvable and $P \cap N$ and $PN/N$ are abelian for every $P \in \mathrm{Syl}_p(G)$.
We prove that there exists a universal constant D such that if p is a prime divisor of the index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of G is at least $Dp/\log_2p$. We conjecture that we can take $D=1$ and prove that for solvable groups, we can take $D=1/3$.
Let $p \;:\; Y \to X$ be a finite, regular cover of finite graphs with associated deck group $G$, and consider the first homology $H_1(Y;\;{\mathbb{C}})$ of the cover as a $G$-representation. The main contribution of this article is to broaden the correspondence and dictionary between the representation theory of the deck group $G$ on the one hand and topological properties of homology classes in $H_1(Y;\;{\mathbb{C}})$ on the other hand. We do so by studying certain subrepresentations in the $G$-representation $H_1(Y;\;{\mathbb{C}})$.
The homology class of a lift of a primitive element in $\pi _1(X)$ spans an induced subrepresentation in $H_1(Y;\;{\mathbb{C}})$, and we show that this property is never sufficient to characterize such homology classes if $G$ is Abelian. We study $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \leq H_1(Y;\;{\mathbb{C}})$—the subrepresentation spanned by homology classes of lifts of commutators of primitive elements in $\pi _1(X)$. Concretely, we prove that the span of such a homology class is isomorphic to the quotient of two induced representations. Furthermore, we construct examples of finite covers with $H_1^{\textrm{comm}}(Y;\;{\mathbb{C}}) \neq \ker\!(p_*)$.
We compute the trivial source character tables (also called species tables of the trivial source ring) of the infinite family of finite groups $\operatorname{SL}_{2}(q)$ for q even over a large enough field of odd characteristics. This article is a continuation of our article Trivial Source Character Tables of$\operatorname{SL}_{2}(q)$, where we considered, in particular, the case in which q is odd in non-defining characteristic.
The Frobenius–Schur indicators of characters in a real $2$-block with dihedral defect groups have been determined by Murray [‘Real subpairs and Frobenius–Schur indicators of characters in 2-blocks’, J. Algebra322 (2009), 489–513]. We show that two infinite families described in his work do not exist and we construct examples for the remaining families. We further present some partial results on Frobenius–Schur indicators of characters in other tame blocks.
Let
$\Gamma _{g}$
be the fundamental group of a closed connected orientable surface of genus
$g\geq 2$
. We develop a new method for integrating over the representation space
$\mathbb {X}_{g,n}=\mathrm {Hom}(\Gamma _{g},S_{n})$
, where
$S_{n}$
is the symmetric group of permutations of
$\{1,\ldots ,n\}$
. Equivalently, this is the space of all vertex-labeled, n-sheeted covering spaces of the closed surface of genus g.
Given
$\phi \in \mathbb {X}_{g,n}$
and
$\gamma \in \Gamma _{g}$
, we let
$\mathsf {fix}_{\gamma }(\phi )$
be the number of fixed points of the permutation
$\phi (\gamma )$
. The function
$\mathsf {fix}_{\gamma }$
is a special case of a natural family of functions on
$\mathbb {X}_{g,n}$
called Wilson loops. Our new methodology leads to an asymptotic formula, as
$n\to \infty $
, for the expectation of
$\mathsf {fix}_{\gamma }$
with respect to the uniform probability measure on
$\mathbb {X}_{g,n}$
, which is denoted by
$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$
. We prove that if
$\gamma \in \Gamma _{g}$
is not the identity and q is maximal such that
$\gamma $
is a qth power in
$\Gamma _{g}$
, then
as
$n\to \infty $
, where
$d\left (q\right )$
is the number of divisors of q. Even the weaker corollary that
$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]=o(n)$
as
$n\to \infty $
is a new result of this paper. We also prove that
$\mathbb {E}_{g,n}[\mathsf {fix}_{\gamma }]$
can be approximated to any order
$O(n^{-M})$
by a polynomial in
$n^{-1}$
.
Let G be a finite group and $\mathrm {Irr}(G)$ the set of all irreducible complex characters of G. Define the codegree of $\chi \in \mathrm {Irr}(G)$ as $\mathrm {cod}(\chi ):={|G:\mathrm {ker}(\chi ) |}/{\chi (1)}$ and denote by $\mathrm {cod}(G):=\{\mathrm {cod}(\chi ) \mid \chi \in \mathrm {Irr}(G)\}$ the codegree set of G. Let H be one of the $26$ sporadic simple groups. We show that H is determined up to isomorphism by cod$(H)$.
We prove that if a solvable group A acts coprimely on a solvable group G, then A has a relatively ‘large’ orbit in its corresponding action on the set of ordinary complex irreducible characters of G. This improves an earlier result of Keller and Yang [‘Orbits of finite solvable groups on characters’, Israel J. Math.199 (2014), 933–940].
In this paper, we study the supercharacter theories of elementary abelian $p$-groups of order $p^{2}$. We show that the supercharacter theories that arise from the direct product construction and the $\ast$-product construction can be obtained from automorphisms. We also prove that any supercharacter theory of an elementary abelian $p$-group of order $p^{2}$ that has a non-identity superclass of size $1$ or a non-principal linear supercharacter must come from either a $\ast$-product or a direct product. Although we are unable to prove results for general primes, we do compute all of the supercharacter theories when $p = 2,\, 3,\, 5$, and based on these computations along with particular computations for larger primes, we make several conjectures for a general prime $p$.