We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Interest in studies examining the effect of temperament types on nutrition has recently increased. The aim of this study was to evaluate the relationship between nine types of temperament, anthropometric measurements, and nutrition in adults. This study was conducted on 1317 individuals aged between 18 and 55 years. Descriptive information, dietary habits and anthropometric measurements of the participants were questioned. The Nine Types of Temperament Scale was administered to the individuals and food consumption records were obtained with a 24-hour retrospective reminder method. Type 2 scores of obese participants were higher than those of underweight and normal body weight; Type 8 scores of overweight participants were higher than those of normal body weight. Daily dietary intake of protein, riboflavin, folate, vitamins K, C, calcium, iron, and cholesterol were negatively associated with Type 1 score; protein, magnesium, iron, zinc intake, and water consumption were negatively associated with Type 2 score. Type 3 score was negatively associated with dietary CHO (%), dietary magnesium, iron, and zinc intake and positively associated with water consumption. The results of the study indicate significant relationships between temperament types, dietary habits, and anthropometric measures. In this context, considering temperament types when planning dietary patterns of individuals may be a new approach.
In this study, nine isonitrogenous experimental diets containing graded levels of carbohydrates (40 g/kg, 80 g/kg and 120 g/kg) and crude lipids (80 g/kg, 120 g/kg and 160 g/kg) were formulated in a two-factor (3 × 3) orthogonal design. A total of 945 mandarin fish with similar body weights were randomly assigned to twenty-seven tanks, and the experiment diets were fed to triplicate tanks twice daily for 10 weeks. Results showed that different dietary treatments did not significantly affect the survival rate and growth performance of mandarin fish. However, high dietary lipid and carbohydrate levels significantly decreased the protein content of the whole body and muscle of cultured fish. The lipid content of the whole body, liver and muscle all significantly increased with increasing levels of dietary lipid, while only liver lipid level was significantly affected by dietary carbohydrate level. Hepatic glycogen content increased significantly with increasing dietary carbohydrate levels. As to liver antioxidant capacity, malondialdehyde content increased significantly with increasing dietary lipid or carbohydrate content, and catalase activity showed an opposite trend. Superoxide dismutase activity increased significantly with increasing levels of dietary lipid but decreased first and then increased with increasing dietary carbohydrate levels. Additionally, the increase in both dietary lipid and carbohydrate levels resulted in a significant reduction in muscle hardness. Muscle chewiness, gumminess and shear force were only affected by dietary lipid levels and decreased significantly with increasing dietary lipid levels. In conclusion, considering all the results, the appropriate dietary lipids and carbohydrate levels for mandarin fish were 120 g/kg and 80 g/kg, respectively.
Dietary intake plays a key role in athletic performance in rowing(1). Suboptimal nutrition within the adolescent rowing population may negatively affect performance, normal growth and development, professional athlete development, and career longevity. Previous research has indicated that suboptimal carbohydrate intakes are a common issue in rowing(2). The quality of nutritional intake in adolescent rowers has seldom been explored. During moderate training, adolescent athletes should aim for 5-7g.kg-1 of carbohydrates, 1.3-1.8g.kg-1 of protein, and 20-35% energy from fat(3). This study aimed to examine the dietary intake of adolescent rowers in New Zealand and compare it with nutritional guidelines for normal growth, development, and sports performance. A cross-sectional study design involved data collection on two ‘hard’ training days, and two ‘recovery’ days from rowers (14-21 years) recruited from clubs and secondary schools around New Zealand. Participants completed four 24-hour collection periods, recording food intake, training duration and intensity. The food records were verified for accuracy, and dietary data was entered into Foodworks software for nutritional analysis. IBM SPSS software was used to calculate mean intakes for carbohydrate, protein, fat, and standard deviations. Independent t-tests were used to compare carbohydrate and protein intakes between males and females. Of the initial 40 participants, 35 fully (n = 23 females, 16.8 ± 1.9 years and n = 12 males, 17.3 ± 1.6 years) completed the study. Participants consumed 319 ± 116g (4.5 ± 1.7g.kg-1/day) of carbohydrates, 121 ± 56 g (1.7 ± 0.7 g.kg-1/day) of protein and 113 ± 46 g (1.6 ± 0.6g.kg-1/day) of fat per day. Females consumed 290 ± 80g (4.4 ± 1.3g.kg-1/day) of carbohydrates and males consumed 400 ± 78 g (5.0 ± 1.4g.kg-1/day) per day, with no significant difference between males and females intake per kilogram of bodyweight per day (p = 0.165). Minimum carbohydrate levels of 5g.kg-1 per day were only achieved by 7 females (30.4%) and 4 (33.3%) males. Females consumed significantly less protein per day, 106 ± 38g (1.6 ± 0.6 g.kg-1/day), in comparison to males who consumed 164 ± 46 grams (2.0 ± 0.5 g.kg-1/day) per day (p = 0.04). Fourteen females (60.9%) and 10 males (83.3%) consumed more than the minimum requirement of 1.3g.kg-1 of protein per day. The findings suggest that 2 out of 3 adolescent rowers in New Zealand fail to reach the minimum recommendations for carbohydrate intake(3), and males more readily meet the recommended intakes of protein when compared to females. Nutrition education for adolescent rowers in New Zealand should emphasise adequate carbohydrate and protein intakes that meet sports nutrition guidelines in order to support normal growth, development and optimised performance for these athletes.
Despite the well-documented role of carbohydrate (CHO) in promoting endurance exercise performance, endurance athletes typically fail to meet current recommendations in competition. Adequate nutrition knowledge is key to drive athletes’ behaviour, but the current level of knowledge in this population is not known. The present study assessed knowledge of CHO for competition in an international cohort of endurance athletes using the Carbohydrates for Endurance Athletes in Competition Questionnaire (CEAC-Q). The CEAC-Q was completed by 1016 individuals (45 % female), from the United Kingdom (40 %), Australia/New Zealand (22 %), the United States of America/Canada (18 %) and other countries (21 %). Total CEAC-Q scores were 50 ± 20 % (mean ± sd), with no differences in scores between the five subsections (10 ± 5 points, P < 0⋅001). Based on typical knowledge and frequency of correct answers, we defined questions with low (0–39 %), moderate (40–69 %) and high (70–100 %) knowledge at a population level. Knowledge deficiencies were identified in questions related to CHO metabolism (Low: 2 out of 5 questions (2/5), Moderate: 3/5), CHO-loading (Low: 2/5, Moderate: 1/5), pre-event CHO (Low: 2/5, Moderate: 2/5), CHO during exercise (Moderate: 4/5) and CHO for recovery (Low: 3/5, Moderate: 1/5). Current CHO amounts recommendations were identified correctly for CHO-loading, pre-competition meal, during competition >2⋅5 h) and post-competition recovery by 28% (Low), 45 % (Moderate), 48 % (Moderate), and 29 % (Low), respectively. Our findings indicate that endurance athletes typically have limited knowledge of carbohydrate guidelines for competition, and we identify specific knowledge gaps that can guide targeted nutrition education to improve knowledge as an initial step towards optimal dietary practice.
One of the challenges to improve sweet corn [Zea mays var. Saccharata (Sturtev.) L. H. Bailey] production is finding a way to increase crop establishment and decrease weed infestation. Crop establishment and weed control are of prime importance in sweet corn production. Three methods of seedbed preparation including pre-planting irrigation before ridge-furrow preparation, pre-planting irrigation after ridge-furrow preparation and irrigation after planting, and four wheat (Triticum aestivum L.) residue rates (0, 250, 500 and 750 g/m2) were arranged in a split plot based on a randomized complete blocks design. Higher seedling emergence and weed control were significantly obtained in pre-planting irrigation than irrigation after planting treatments. Wheat residue mulching reduced soil moisture depletion, proline and soluble carbohydrates contents with decreasing weed biomass. The efficiency of weed management was found to be ensured using pre-planting irrigation coupled with wheat residues application. The grain yield was the highest (1433 g/m2) using pre-planting irrigation and wheat residue mulching (750 g/m2). Weed biomass decreased by 58% in pre-planting irrigation after ridge-furrow preparation and wheat residue mulching (750 g/m2) compared to irrigation after planting and no-mulching treatment. Therefore, pre-planting irrigation after ridge-furrow preparation and wheat residues application (500–750 g/m2) were optimal management practices for crop establishment and weed control to improve yields and water productivity of sweet corn in the region.
To examine the associations of trimester-specific maternal prenatal carbohydrate (CHO) intake with offspring adiposity and metabolic health during peripuberty.
Design:
Prospective cohort study in which maternal dietary intake was collected via validated FFQ during each trimester. Offspring adiposity and metabolic biomarkers were evaluated at age 8–14 years. We used multivariable linear regression to examine associations between total energy-adjusted maternal CHO intake and offspring BMI z-score, skinfold thickness and metabolic syndrome risk z-score calculated as the average of waist circumference, fasting glucose, fasting C-peptide, TAG:HDL and systolic blood pressure + diastolic blood pressure/2.
Setting:
Mexico City, Mexico
Participants:
237 mother–child pairs in the Early Life Exposure in Mexico to Environmental Toxicants cohort.
Results:
We found non-linear associations of maternal CHO intake during pregnancy with offspring metabolic health during peripuberty. After adjusting for maternal age, and child age, sex and pubertal status, children whose mothers were in the fourth v. first quartile of total CHO intake during the third trimester had 0·42 (95 % CI –0·01, 0·08) ng/ml lower C-peptide and 0·10 (95 % CI –0·02, 0·22) units lower C-peptide insulin resistance (CP-IR). We found similar magnitude and direction of association with respect to net CHO intake during the first trimester and offspring C-peptide and CP-IR. Maternal CHO intake during pregnancy was not associated with offspring adiposity.
Conclusions:
In this study of mother–child pairs in Mexico City, children born to women in the highest quartile of CHO intake during pregnancy had lowest C-peptide and CP-IR during peripuberty. Additional research is warranted to replicate and identify mechanisms.
Understanding the effects of acute feeding on body composition and metabolic measures is essential to the translational component and practical application of measurement and clinical use. To investigate the influence of acute feeding on the validity of dual-energy X-ray absorptiometry (DXA), a four-compartment model (4C) and indirect calorimetry metabolic outcomes, thirty-nine healthy young adults (n 19 females; age: 21·8 (sd 3·1) years, weight; 71·5 (sd 10·0) kg) participated in a randomised cross-over study. Subjects were provided one of four randomised meals on separate occasions (high carbohydrate, high protein, ad libitum or fasted baseline) prior to body composition and metabolic assessments. Regardless of macronutrient content, acute feeding increased DXA percent body fat (%fat) for the total sample and females (average constant error (CE):–0·30 %; total error (TE): 2·34 %), although not significant (P = 0·062); the error in males was minimal (CE: 0·11 %; TE: 0·86 %). DXA fat mass (CE: 0·26 kg; TE: 0·75 kg) and lean mass (LM) (CE: 0·83 kg; TE: 1·23 kg) were not altered beyond measurement error for the total sample. 4C %fat was significantly impacted from all acute feedings (avg CE: 0·46 %; TE: 3·7 %). 4C fat mass (CE: 0·71 kg; TE: 3·38 kg) and fat-free mass (CE: 0·55 kg; TE: 3·05 kg) exceeded measurement error for the total sample. RMR was increased for each feeding condition (TE: 1666·9 kJ/d; 398 kcal/d). Standard pre-testing fasting guidelines may be important when evaluating DXA and 4C %fat, whereas additional DXA variables (fat mass and LM) may not be significantly impacted by an acute meal. Measuring body composition via DXA under less stringent pre-testing guidelines may be valid and increase feasibility of testing in clinical settings.
Cycling is a sport characterised by high training load, and adequate nutrition is essential for training and race performance. With the increased popularity of indoor trainers, cyclists have a unique opportunity to practice and implement key nutritional strategies. This study aimed to assess carbohydrate (CHO) intake of cyclists training or racing in this unique scenario for optimising exercise nutrition. A mixed-methods approach consisting of a multiple-pass self-report food recall and questionnaire was used to determine total CHO intake pre, during and post-training or racing using a stationary trainer and compared with current guidelines for endurance exercise. Sub-analyses were also made for higher ability cyclists (>4 W/kg functional threshold power), races v. non-races and ‘key’ training sessions. Mean CHO intake pre and post-ride was 0·7 (sd 0·6) and 1·0 (sd 0·8) g kg/BM and 39·3 (sd 27·5) g/h during training. CHO intake was not different for races (pre/during/post, P = 0·31, 0·23, 0·18, respectively), ‘key sessions’ (P = 0·26, 0·89, 0·98) or higher ability cyclists (P = 0·26, 0·76, 0·45). The total proportion of cyclists who failed to meet CHO recommendations was higher than those who met guidelines (pre = 79 %, during = 86 %, post = 89 %). Cyclists training or racing indoors do not meet current CHO recommendations for cycling performance. Due to the short and frequently high-intensity nature of some sessions, opportunity for during exercise feeding may be limited or unnecessary.
Nut-based products may aid low-glycaemic dietary strategies that are important for diabetes prevention in populations at increased risk of dysglycaemia, such as Asian Chinese. This randomised cross-over trial assessed the postprandial glycaemic response (0–120 min) of a higher-protein nut-based (HP-NB) snack formulation, in bar format (1009 kJ, Nutrient Profiling Score, NPS, −2), when compared with an iso-energetic higher-carbohydrate (CHO) cereal-based bar (HC-CB, 985 kJ, NPS +3). It also assessed the ability to suppress glucose response to a typical CHO-rich food (white bread, WB), when co-ingested. Ten overweight prediabetic Chinese adults (mean, sd: age 47⋅9, 15⋅7 years; BMI 25⋅5, 1⋅6 kg/m2), with total body fat plus ectopic pancreas and liver fat quantified using dual-energy X-ray absorptiometry and magnetic resonance imaging and spectroscopy, received the five meal treatments in random order: HP-NB, HC-CB, HP-NB + WB (50 g available CHO), HC-CB + WB and WB only. Compared with HC-CB, HP-NB induced a significantly lower 30–120 min glucose response (P < 0⋅05), with an approximately 10-fold lower incremental area under the glucose curve (iAUC0–120; P < 0⋅001). HP-NB also attenuated glucose response by approximately 25 % when co-ingested with WB (P < 0⋅05). Half of the cohort had elevated pancreas and/or liver fat, with 13–21 % greater suppression of iAUC0–120 glucose in the low v. high organ fat subgroups across all five treatments. A nut-based snack product may be a healthier alternative to an energy equivalent cereal-based product with evidence of both a lower postprandial glycaemic response and modulation of CHO-induced hyperglycaemia even in high-risk, overweight, pre-diabetic adults.
We aimed to examine the association between low-carbohydrate diet (LCD) scores during the first trimester and gestational diabetes mellitus (GDM) risk in a Chinese population. A total of 1455 women were included in 2017. Dietary information during the first trimester was collected by 24-h dietary recalls for 3 d. The overall, animal and plant LCD scores, which indicated adherence to different low-carbohydrate dietary patterns, were calculated. GDM was diagnosed based on the results of a 75-g, 2-h oral glucose tolerance test at 24–28 weeks gestation. Log-binomial models were used to estimate relative risks (RR) and 95 % CI. The results showed that the multivariable-adjusted RR of GDM from the lowest to the highest quartiles of the overall LCD score were 1·00 (reference), 1·15 (95 % CI 0·92, 1·42), 1·30 (95 % CI 1·06, 1·60) and 1·24 (95 % CI 1·01, 1·52) (P = 0·026 for trend). Multivariable-adjusted RR (95 % CI) of GDM from the lowest to the highest quartiles of the animal LCD score were 1·00 (reference), 1·20 (95 % CI 0·96, 1·50), 1·41 (95 % CI 1·14, 1·73) and 1·29 (95 % CI 1·04, 1·59) (P = 0·002 for trend). After additional adjustment for gestational weight gain before GDM diagnosis, the association of the overall LCD score with GDM risk was non-significant, while the association of animal LCD score with GDM risk remained significant. In conclusion, a low-carbohydrate dietary pattern characterised by high animal fat and protein during the first trimester is associated with an increased risk of GDM in Chinese women.
Several countries have issued dietary recommendations about total and specific fatty acid (FA) intake for the prevention of CHD. For many years until today, controversies have existed especially about the deleterious effect or not of SFA, and the protective effect or not of n-3 PUFA, so that some authors have criticised these recommendations. There are many reasons for these controversies, including the different conclusions of prospective cohort studies compared with randomised clinical trials (RCT), and the contradictory conclusions of meta-analyses depending on the quality, number and type of studies included. The interrelationships between different FA in the diet make it difficult to analyse the specific effect of a particular class of FA on CHD. Furthermore, based on clinical practice and effectiveness of population-based prevention, it is very difficult at the individual level to assess in personal dietary intake the actual percentage and/or amount of SFA contained in each meal or consumed daily/weekly. In this critical narrative review, we try to answer the question of whether it would not be more relevant, in 2020, to promote dietary patterns, rather than FA intake recommendations. We critically analyse past and recent data on the association of FA with CHD, then propose that the Mediterranean diet and Japanese diet should be revitalised for Westerners and Asian populations, respectively. This does not exclude the usefulness of continuing research about effects of FA towards CHD, and accepting that what seems true today might be revised, at least partially tomorrow.
Poor post-prandial glucose control is a risk factor for multiple health conditions. The second-meal effect refers to the progressively improved glycaemic control with repeated feedings, an effect which is achievable with protein ingestion at the initial eating occasion. The most pronounced glycaemic response each day therefore typically occurs following breakfast, so the present study investigated whether ingesting protein during the night could improve glucose control at the first meal of the day. In a randomised crossover design, fifteen adults (seven males, eight females; age, 22 (sd 3) years; BMI, 24·0 (sd 2·8) kg/m2; fasting blood glucose, 4·9 (sd 0·5) mmol/l) woke at 04.00 (sd 1) hours to ingest 300 ml water with or without 63 g whey protein. Participants then completed a mixed-macronutrient meal tolerance test (1 g carbohydrate/kg body mass, 2356 (sd 435) kJ), 5 h 39 min following the nocturnal feeding. Nocturnal protein ingestion increased the glycaemic response (incremental AUC) to breakfast by 43·5 (sd 55·5) mmol × 120 min/l (P = 0·009, d = 0·94). Consistent with this effect, individual peak blood glucose concentrations were 0·6 (sd 1·0) mmol/l higher following breakfast when protein had been ingested (P = 0·049, d = 0·50). Immediately prior to breakfast, rates of lipid oxidation were 0·02 (sd 0·03) g/min higher (P = 0·045) in the protein condition, followed by an elevated post-prandial energy expenditure (0·38 (sd 0·50) kJ/min, P = 0·018). Post-prandial appetite and energy intake were similar between conditions. The present study reveals a paradoxical second-meal phenomenon whereby nocturnal whey protein feeding impaired subsequent glucose tolerance, whilst increasing post-prandial energy expenditure.
Mycoprotein consumption has been shown to improve acute postprandial glycaemic control and decrease circulating cholesterol concentrations. We investigated the impact of incorporating mycoprotein into the diet on insulin sensitivity (IS), glycaemic control and plasma lipoprotein composition. Twenty healthy adults participated in a randomised, parallel-group trial in which they consumed a 7 d fully controlled diet where lunch and dinner contained either meat/fish (control group, CON) or mycoprotein (MYC) as the primary source of dietary protein. Oral glucose tolerance tests were performed pre- and post-intervention, and 24 h continuous blood glucose monitoring was applied throughout. Fasting plasma samples were obtained pre- and post-intervention and were analysed using quantitative, targeted NMR-based metabonomics. There were no changes within or between groups in blood glucose or serum insulin responses, nor in IS or 24 h glycaemic profiles. No differences between groups were found for 171 of the 224 metabonomic targets. Forty-five lipid concentrations of different lipoprotein fractions (VLDL, LDL, intermediate-density lipoprotein and HDL) remained unchanged in CON but showed a coordinated decrease (7–27 %; all P < 0·05) in MYC. Total plasma cholesterol, free cholesterol, LDL-cholesterol, HDL2-cholesterol, DHA and n-3 fatty acids decreased to a larger degree in MYC (14–19 %) compared with CON (3–11 %; P < 0·05). Substituting meat/fish for mycoprotein twice daily for 1 week did not modulate whole-body IS or glycaemic control but resulted in changes to plasma lipid composition, the latter primarily consisting of a coordinated reduction in circulating cholesterol-containing lipoproteins.
Aquafeeds for carnivorous species face a nutritional–technological conundrum: containing sufficient starch to meet specific manufacturing requirements for binding, extrusion and expansion, but ideally containing as little starch as possible owing to their limited ability to utilise carbohydrates. The present study evaluated the effects of dietary starch with different amylose to amylopectin ratios and resistant starch contents on growth performance, hepatic glycogen accumulation and glucose metabolism of an important cultured carnivorous finfish, largemouth bass (Micropterus salmoides). A common starch source (α-cassava starch (CS)) was tested as is or after being enzymatically de-branched at three different inclusion levels in diets for largemouth bass. Results showed that the increased dietary starch levels compromised performance and high dietary α-CS content led to obvious liver damage. However, the growth performances of fish fed the diets with de-branched starch (DS) were improved, and no manifest liver damages were observed even at the higher inclusion level. The increasing dietary starch contents significantly increased hepatic glycogen accumulation, but not when DS was used. High dietary starch content, without regard to starch sources, had no effect on the expression of glucose metabolism-related genes, except for down-regulation of insulin receptor expression. However, the use of dietary DS promoted the expression of genes involved in the insulin pathway and glycolysis. In conclusion, this study showed that the use of starch sources with a high amylose to amylopectin ratio and resistant starch in the feed for cultured carnivorous finfish could alleviate the hepatic glycogen deposition through regulating the insulin pathway and glycolysis.
Maternal diet during pregnancy can influence fetal growth; however, the available evidence is controversial. We aimed to assess whether maternal diet of Japanese women in mid-pregnancy can affect their offspring’s birth size via collection of questionnaire and medical record data. The studied sample was a large cohort of paired mothers and their singleton offspring (n 78 793) from fifteen areas all over Japan who participated in the Japan Environment and Children’s Study. The mid-pregnancy intakes of total energy, macronutrients and vitamins were lower than the recommended intakes for pregnant Japanese women. Maternal total energy intake was positively associated with the offspring’s birth weight; there was a 10-g mean difference in the offspring’s birth weight of mothers in the lowest (3026 g) v. highest (3036 g) quartiles of energy intake. Carbohydrate intake was positively associated with the offspring’s birth length (mean difference of 0·7 cm) and inversely associated with the ponderal index (mean difference of 0·8 g/cm3). Offspring of mothers in the highest v. lowest quartiles of total dietary fibre intake were on average 9 g heavier and had 0·3 cm longer birth length and 0·2 cm longer head circumference. The highest in reference to lowest intake quartile of vitamin C was associated with 13 g and 0·7 cm mean differences in the offspring’s birth weight and length, respectively. Several other associations were evident for maternal intakes of vitamins and the offspring’s birth size. In conclusion, maternal dietary intakes of energy, dietary fibre, carbohydrate and vitamins during pregnancy were associated with the offspring’s birth size.
Barramundi (Lates calcarifer) are a highly valued aquaculture species, and, as obligate carnivores, they have a demonstrated preference for dietary protein over lipid or starch to fuel energetic growth demands. In order to investigate how carnivorous fish regulate nutritional cues, we examined the metabolic effects of feeding two isoenergetic diets that contained different proportions of digestible protein or starch energy. Fish fed a high proportion of dietary starch energy had a higher proportion of liver SFA, but showed no change in plasma glucose levels, and few changes in the expression of genes regulating key hepatic metabolic pathways. Decreased activation of the mammalian target of rapamycin growth signalling cascade was consistent with decreased growth performance values. The fractional synthetic rate (lipogenesis), measured by TAG 2H-enrichment using 2H NMR, was significantly higher in barramundi fed with the starch diet compared with the protein diet (0·6 (se 0·1) v. 0·4 (se 0·1) % per d, respectively). Hepatic TAG-bound glycerol synthetic rates were much higher than other closely related fish such as sea bass, but were not significantly different (starch, 2·8 (se 0·3) v. protein, 3·4 (se 0·3) % per d), highlighting the role of glycerol as a metabolic intermediary and high TAG-FA cycling in barramundi. Overall, dietary starch significantly increased hepatic TAG through increased lipogenesis. Compared with other fish, barramundi possess a unique mechanism to metabolise dietary carbohydrates and this knowledge may define ways to improve performance of advanced formulated feeds.
Given the common view that pre-exercise nutrition/breakfast is important for performance, the present study investigated whether breakfast influences resistance exercise performance via a physiological or psychological effect. Twenty-two resistance-trained, breakfast-consuming men completed three experimental trials, consuming water-only (WAT), or semi-solid breakfasts containing 0 g/kg (PLA) or 1·5 g/kg (CHO) maltodextrin. PLA and CHO meals contained xanthan gum and low-energy flavouring (approximately 122 kJ), and subjects were told both ‘contained energy’. At 2 h post-meal, subjects completed four sets of back squat and bench press to failure at 90 % ten repetition maximum. Blood samples were taken pre-meal, 45 min and 105 min post-meal to measure serum/plasma glucose, insulin, ghrelin, glucagon-like peptide-1 and peptide tyrosine-tyrosine concentrations. Subjective hunger/fullness was also measured. Total back squat repetitions were greater in CHO (44 (sd 10) repetitions) and PLA (43 (sd 10) repetitions) than WAT (38 (sd 10) repetitions; P < 0·001). Total bench press repetitions were similar between trials (WAT 37 (sd 7) repetitions; CHO 39 (sd 7) repetitions; PLA 38 (sd 7) repetitions; P = 0·130). Performance was similar between CHO and PLA trials. Hunger was suppressed and fullness increased similarly in PLA and CHO, relative to WAT (P < 0·001). During CHO, plasma glucose was elevated at 45 min (P < 0·05), whilst serum insulin was elevated (P < 0·05) and plasma ghrelin suppressed at 45 and 105 min (P < 0·05). These results suggest that breakfast/pre-exercise nutrition enhances resistance exercise performance via a psychological effect, although a potential mediating role of hunger cannot be discounted.
To investigate the cross-sectional associations of dietary carbohydrate and fatty acid intakes with cognition in mid-childhood.
Design:
Dietary carbohydrate and fatty acid intakes were assessed using 4-d food records, and cognition was evaluated using the Raven’s Coloured Progressive Matrices (RCPM) score. The cross-sectional associations of dietary carbohydrate and fatty acid intakes with cognition were investigated using linear regression analyses adjusted for age, sex, body fat percentage, household income, parental education and daily energy intake.
Setting:
The baseline examinations of the Physical Activity and Nutrition in Children study.
Participants:
A population-based sample of 487 children (250 boys, 237 girls) aged 6–8 years living in the city of Kuopio, Finland.
Results:
A higher dietary intake of fructose (standardised regression coefficient, β = 0·24, P < 0·001), total fibre (β = 0·16, P = 0·02) and soluble fibre (β = 0·15, P = 0·02) was associated with a higher RCPM score in boys. Other dietary carbohydrates and fatty acids, including total carbohydrates, glucose, sucrose, starch, insoluble fibre, total fat, SFAs, MUFAs, PUFAs, palmitic acid (C16), stearic acid (C18), linoleic acid (C18:2), α-linoleic acid (C18:3), arachidonic acid (C20:4), EPA (C20:5n-3) and DHA (C22:6n-6), were not associated with the RCPM score in boys. Dietary carbohydrates or fatty acids were not associated with the RCPM score in girls.
Conclusions:
Higher dietary fructose and fibre intakes were associated with better cognition in boys, but not in girls. Dietary fatty acids were not related to cognition in boys or in girls.
The global prevalence of obesity and obesity-associated cardiometabolic diseases is a significant public health burden. Chronic low-grade inflammation in metabolic tissues such as white adipose tissue (WAT) is linked to obesity and may play a role in disease progression. The overconsumption of dietary fat has been suggested to modulate the WAT inflammatory environment. It is also recognised that fats varying in degree of fatty acid saturation may elicit differential WAT inflammatory responses. This information has originated predominantly from animal or cell models and translation into human participants in vivo remains limited. This review will summarise human intervention studies investigating the effect of dietary fat quantity and quality on subcutaneous WAT inflammation, with a specific focus on the toll-like receptor 4 (TLR4)/NF-κB and nucleotide-binding and oligomerisation domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome molecular signalling pathways. Overall, firm conclusions are hard to draw regarding the effect of dietary fat quantity and quality on WAT inflammatory responses due to the heterogeneity of study designs, diet composition and participant cohorts recruited. Previous studies have predominantly focused on measures of WAT gene expression. It is suggested that future work includes measures of WAT total content and phosphorylation of proteins involved in TLR4/NF-κB and NLRP3 signalling as this is more representative of alterations in WAT physiological function. Understanding pathways linking the intake of total fat and specific fatty acids with WAT metabolic-inflammatory responses may have important implications for public health by informing dietary guidelines aimed at cardiometabolic risk reduction.
Pregastric fermentation along with production practices that are dependent on high-energy diets means ruminants rely heavily on starch and protein assimilation for a substantial portion of their nutrient needs. While the majority of dietary starch may be fermented in the rumen, significant portions can flow to the small intestine. The initial phase of small intestinal digestion requires pancreatic α-amylase. Numerous nutritional factors have been shown to influence pancreatic α-amylase secretion with starch producing negative effects and casein, certain amino acids and dietary energy having positive effects. To date, manipulation of α-amylase secretion has not resulted in substantial changes in digestibility. The second phase of digestion involves the actions of the brush border enzymes sucrase-isomaltase and maltase-glucoamylase. Genetically, ruminants appear to possess these enzymes; however, the absence of measurable sucrase activity and limited adaptation with changes in diet suggests a reduced capacity for this phase of digestion. The final phase of carbohydrate assimilation is glucose transport. Ruminants possess Na+-dependent glucose transport that has been shown to be inducible. Because of the nature of pregastric fermentation, ruminants see a near constant flow of microbial protein to the small intestine. This results in a nutrient supply, which places a high priority on protein digestion and utilization. Comparatively, little research has been conducted describing protein assimilation. Enzymes and processes appear consistent with non-ruminants and are likely not limiting for efficient digestion of most feedstuffs. The mechanisms regulating the nutritional modulation of digestive function in the small intestine are complex and coordinated via the substrate, neural and hormonal effects in the small intestine, pancreas, peripheral tissues and the pituitary—hypothalamic axis. More research is needed in ruminants to help unravel the complexities by which small intestinal digestion is regulated with the aim of developing approaches to enhance and improve the efficiency of small intestinal digestion.