We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Sea-ice deformation is concentrated at linear kinematic features such as ridges and leads. Ridging and leads opening processes are highly related to sea-ice fracture. Different rheology models have been successfully applied in various scenarios. However, most of the approaches adopted are based on continuum mechanics that do not explicitly model fracture processes. There are emerging needs for a more physically informed modelling methods that explicitly address fracture at the kilometre scale. In pursuing this objective, in this paper we explored the potential of applying a promising mesh free numerical method, peridynamics (PD), in modelling ice floe (~km) fractures. PD offers a physically and mathematically consistent theory through which spontaneous emergence and propagation of cracks can be achieved. The integral nature of the governing equations in PD remains valid even if a crack appears. We numerically investigated in this paper the tensile fracture (e.g. lead opening) of an elastic heterogenous ice floe. The modelling results were compared with published numerical results obtained by another numerical method. The potentials and challenges of PD in this application are discussed and summarized.
The seed coat of tobacco displays an intriguing cellular pattern characterised by puzzle-like shapes whose specific function is unknown. Here, we perform a detailed investigation of the structure of tobacco seeds by electron microscopy and then follow the germination process by time lapse optical microscopy. We use particle image velocimetry to reveal the local deformation fields and perform compression experiments to study the mechanical properties of the seeds as a function of their hydration. To understand the mechanical role of the observed coat structure, we perform finite element calculations comparing structure with puzzle-shaped cells with similar structures lacking re-entrant features. The results indicate that puzzle-shaped cells act as stress suppressors and reduce the Poisson’s ratio of the seed coat structure. We thus conclude that the peculiar cellular structure of these seed coats serves a mechanical purpose that could be relevant to control germination.
Severe crush injury can result in sequelae such as significant bony fractures, rhabdomyolysis, extremity compartment syndrome or crush syndrome. Crush syndrome comprises the systemic manifestations that arise as a result of a crush injury followed by reperfusion. From the rupture of muscle cells, substances such as myoglobin, potassium, phosphorus and creatinine phosphokinase are released into the bloodstream. The patient can subsequently develop hyperkalemia, hypocalcemia, hypovolemia, shock, compartment syndrome, lactic acidosis or renal failure from traumatic rhabdomyolysis (seen in up to 40% of patients with crush injury).
Previous studies on the relationship between dairy consumption and hip fracture risk have reported inconsistent findings. Therefore, we aimed to conduct an algorithmically driven non-linear dose-response meta-analysis of studies assessing dairy intake and risk of developing incident hip fracture. Meta-analysis from PubMed and Google Scholar searches for articles of prospective studies of dairy intake and risk of hip fracture, supplemented by additional detailed data provided by authors. Meta-regression derived dose-response relative risks, with comprehensive algorithm-driven dose assessment across the entire dairy consumption spectrum for non-linear associations. Review of studies published in English from 1946 through December 2021. A search yielded 13 studies, with 486 950 adults and 15 320 fractures. Non-linear dose models were found to be empirically superior to a linear explanation for the effects of milk. Milk consumption was associated with incrementally higher risk of hip fractures up to an intake of 400 g/d, with a 7 % higher risk of hip fracture per 200 g/d of milk (RR 1⋅07, 95 % CI 1⋅05, 1⋅10; P < 0⋅0001), peaking with 15 % higher risk (RR 1⋅15, 95 % CI 1⋅09, 1⋅21, P < 0⋅0001) at 400 g/d versus 0 g/d. Although there is a dose-risk attenuation above 400 g/d, milk consumption nevertheless continued to exhibit elevated risk of hip fracture, compared to zero intake, up to 750 g/d. Meanwhile, the analysis of five cohort studies of yoghurt intake per 250 g/d found a linear inverse association with fracture risk (RR 0⋅85, 95 % CI 0⋅82, 0⋅89), as did the five studies of cheese intake per 43 g/d (~1 serving/day) (RR 0⋅81, 95 % CI 0⋅72, 0⋅92); these studies did not control for socioeconomic status. However, no apparent association between total dairy intake and hip fracture (RR per 250 g/d of total dairy = 0⋅97, 95 % CI 0⋅93, 1⋅004; P = 0⋅079). There were both non-linear effects and overall elevated risk of hip fracture associated with greater milk intake, while lower risks of hip fracture were reported for higher yoghurt and cheese intakes.
The chapter commences with a description of various observations of time-dependent fractures in ice. In the medium scale tests, slow loading resulted in very large flaws, whereas fast loading resulted in many small fractures and spalls in the vicinity of the load application. Then, a summary of fracture toughness measurements on ice are summarized. The question of stress singularity at crack tips is raised, and to deal with this, Barenblatt’s analysis is introduced, based on linear elasticity. Schapery’s linear viscoelastic solution for this method is described, using the elastic-viscoelastic correspondence principle. The J integral forms the basis of the application to fracture, using the correspondence principle noted. A set of experiments on ice samples, beams with 4-point loading, was conducted. Tests with a range of loading rates, as well as constant-load tests, were conducted. Comparison of the results with theory was made. The results of Liu and Miller using the compact tension set-up were also considered. Good agreement with theory was found in all cases. Nonlinear viscoelastic theory of Schapery is also outlined.
Recent observations are summarized, in which it has been found that in compressive ice failure, zones of high-pressure form with pressures locally as high as 70 MPa. Various aspects of ice behaviour are summarized: creep, fracture, recrystallization, and the development of microstructurally modified layers of ice. Pressure melting is described, whereby the melting temperature decreases with accompanying hydrostatic pressure. The importance of fracture and spalling in the development of high-pressure zones is emphasized. The use of mechanics in analysis of ice failure is discussed.
The Appendix contains an outline of the development of Biot-Schapery theory based on the thermodynamics of irreversible processes. A brief biography of R. A. Schapery is followed by an exposition of the theory, the use of the modified superposition theory, and the use of J integral to deal with damage processes.
Previous hydrocarbon explorations in the middle of the Tarim Basin indicate that strike-slip faults play an important role in the development of Ordovician carbonate reservoirs and hydrocarbon accumulation. The SB5 fault in the Tarim Basin was the target of this investigation. An evaluation of the stress in situ was carried out and provided boundary conditions to build a 3D geomechanical model. The distribution and application of present in situ stress in the strike-slip fault were studied. The results show good agreement between the absolute measured stress in situ and the modelled stresses, revealing a different stress regime along the strike-slip fault. The uplift segment belongs to a strike-slip stress state, and other areas belong to a normal fault stress state. The strike-slip fault has a significant influence on the present in situ stress distribution. The direction of the maximum horizontal stress deflects near the fault and tends to be parallel to the fault strike. This work introduces a comprehensive evaluation of the present in situ stress of the fractured carbonate reservoirs controlled by the strike-slip fault system. The present in situ stress direction can clarify the propagation direction of hydraulic fracturing and serve to evaluate the effectiveness of natural fractures.
Ideal for entry-level and experienced researchers working in materials science and engineering, this unique book introduces a new subfield of materials science and mechanics of materials: network materials. A comprehensive review of their mechanical behaviours allows readers to understand, design, and enhance the performance of these material systems, across a range of materials including cytoskeletons, connective tissue, and thermoset polymers. By introducing simple models, supported by experimental data, the book provides the necessary fundamental knowledge to assist readers to design and develop their own material systems. By presenting each of these previously disparate material systems within a unified theoretical framework, this book provides a consolidated presentation of the mechanics of networks and their interactions, introducing parameters that define the stochastic structure of the network, and discussing their mechanical behaviour. It is an ideal text for those new to this fast-growing field, and for experienced researchers looking to consolidate their knowledge.
In Chapter 6, we find evidence that opposition successor parties from more closed opportunity structures experience centrifugal strains caused by the amalgamation of ideological orientations and perspectives that they represent. These strains lead to elite polarization that cause movement fracture and collapse. Conversely, opposition successor parties from more open opportunity structures are ideologically more coherent and thus do not suffer the same centrifugal tensions. Second, we see that nearly all opposition successor parties experience a dramatic decline in popularity after founding elections, due the ephemerality of symbolic resources in general (oppositional credibility, in this context). The positive reputations that helped opposition groups persuade citizens to vote for them in founding elections break down under economic strain and political disfunction that so frequently plague new democracies. Finally, we see that in contexts in which authoritarian state institutions persist beyond the transition, the resurgence of state repression against opposition successor parties becomes more likely, while authoritarian successor parties, in contrast, can integrate former regime members into the new democratic political system.
Intermetallic γ-TiAl-based alloys are commonly used as structural materials for components in high-temperature applications, although they generally suffer from a lack of ductility and crack resistance at ambient temperatures. Within this study, the process-adapted 4th generation TNM+ alloy, exhibiting a fully lamellar microstructure, was examined using notched micro-cantilevers with defined orientations of lamellar interfaces. These configurations were tested in situ using superimposed continuous stiffness measurement methods during loading with simultaneous scanning electron microscopy observations. Subsequently, the video signal was used for visual crack length determination by computer vision and compared to values calculated from in situ changes in stiffness data. Applying this combinatorial approach enabled to determine the J-integral as a measure of the fracture toughness for microstructurally different local crack propagation paths. Thus, distinct differences in conditional fracture toughness could be determined from 3.7 MPa m1/2 for γ/γ-interface to 4.4 MPa m1/2 for α2/γ-interface.
The plasticity of body-centered cubic (bcc) metals is dependent of temperature as well as sample dimension at the micrometer scale, but the effects of cryogenic temperature on the plasticity and the related failure process in micron-sized bcc metals have not been studied under uniaxial tension. In this work, we utilized in situ cryogenic micro-tensile tests, transmission electron microscopy, and dislocation dynamic simulations to examine the plasticity and failure processes of [001]-oriented bcc niobium micropillars. Our study reveals that a strong suppression of cross-slip at low temperatures prevents dislocation multiplication and leads to a dislocation starvation state, at which no mobile dislocation exists due to the rapid annihilation of dislocations at free surfaces. New dislocations are then nucleated until stress concentration at a slip step creates a micro-crack, the propagation of which leads to catastrophic failure. This unique failure process results from the combined effects of sample dimension and temperature.
In this study, a spherical indenter mounted on an atomic force microscope (AFM) was used to compress a Nannochloropsis oculata (N. oculata) cell on a poly-l-lysine coated slide. A mathematical model of the cell, which was derived by considering a fluid-filled spherical shell with axisymmetric compression between a sphere and an infinite flat plate, is proposed. In the construction of this mathematical model, the spherical shell was assumed to be a homogenous, isotropic, and elastic material. Thin-film theory was applicable to the spherical shell because the thickness of the shell was nearly negligible compared with its diameter. The governing equations of the contact and noncontact regions were converted from a boundary condition problem to an initial value problem. Then, the fourth-order Runge–Kutta method was applied to solve the transformed governing equations. The force curve obtained from the compression experiment was compared with the theoretical results derived from the proposed model. Furthermore, the numerical solution of the proposed model was verified to be consistent with the experimental data. The mechanical properties of cell walls were confirmed by applying the least square error method. Subsequently, the contact radius, inner pressure and tension distribution of the cell wall could be determined using the proposed model. The models proposed in other studies are suitable for analyzing the compression characteristics of cells whose size is of the order of tens of micrometers and millimeters. By contrast, the model proposed in this study can analyze the compression characteristics of N. oculata, which is only a few micrometers in diameter. Furthermore, a force curve that accurately describes the deformation behavior of N. oculata under strain levels of 25% was established.
Port-a-Cath or chemoport provides prolonged central venous access for cancer patients requiring prolonged chemotherapy. Prolonged use of chemoport is associated with many complications. Dislodgement and migration of chemoport catheter is a rare and reportable complication with potentially serious consequences.
Methods:
The medical charts of 1222 paediatric cancer patients admitted to the Children’s Cancer Center in Lebanon who had chemoports inserted for long-term chemotherapy were retrospectively reviewed. Descriptive analysis of data was conducted.
Results:
Chemoport fracture and migration were found in seven cases with an incidence of 0.57%. The duration of chemoport use before the event of dislodgement varied from 2 months to 102 months. Non-functioning chemoport was the most common presentation. Totally, six cases were managed successfully by loop snaring, three cases by paediatric cardiology team, and three cases by interventional radiology team. One case was managed surgically during chemoport removal.
Conclusion:
Fracture and migration of chemoport catheter is a rare complication of uncertain aetiology and with potentially serious consequences. Percutaneous retrieval, done by experienced cardiologist or interventional radiologist, is the first choice for management of this complication as it is considered as a safe and effective approach.
Hydrogels have gained recent attention for biomedical applications because of their large water content, which imparts biocompatibility. However, their mechanical properties can be limiting. There has been significant recent interest in the strength and fracture toughness of hydrogel materials in addition to their stiffness and time-dependent behavior. Hydrogels can fail in a brittle manner, although they are extremely compliant. In this work, the failure and fracture of hydrogels are examined using a compression test of spherical hydrogel particles. Spheres of commercially available polyacrylamide–potassium polyacrylate were hydrated and tested to failure in compression as a function of loading rate. The spheres exhibited little relaxation when compressed to small fixed displacements. The distributions of strength values obtained were examined in a particle fracture framework previously used for brittle ceramics. There was loading rate dependence apparent in the measured peak force and calculated peak strength values, but the data fell on a single empirical distribution function of strength for the hydrogels regardless of loading rate. Strength values for these hydrogels were mostly in the range of 0.05–0.3 MPa, illustrating the challenges using hydrogels for mechanically demanding applications such as tissue engineering.
The prediction of crack propagation is an important engineering problem. In this work, combined with triangular plane stress finite elements, a new remeshing algorithm for crack opening problems was developed. The proposed algorithm extends the crack iteratively until a threshold maximum crack length is achieved. The crack propagation direction is calculated using the maximum tangential stress criterion. In this calculation, in order to smoothen the stress field in the vicinity of the crack tip, a weighted average of the stresses of the integration points around the crack tip is considered. The algorithm also ensures that there are always at least eight elements and nine nodes surrounding the crack tip, unless the crack tip is close to a domain boundary, in which case there can be fewer elements and nodes around the crack tip.
Four benchmark tests were performed showing that this algorithm leads to accurate crack paths when compared to findings from previous research works, as long as the initial mesh is not too coarse. This algorithm also leads to regular meshes during the propagation process, with very few distorted elements, which is generally one of the main problems when calculating crack propagation with the finite element method.
In this study, a peridynamic material model for a polycrystalline ice is utilised to investigate its fracture behaviour under dynamic loading condition. First, the material model was validated by considering a single grain, double grains and polycrystalline structure under tension loading condition. Peridynamic results are compared against finite element analysis results without allowing failure. After validating the material model, dynamic analysis of a polycrystalline ice material with two pre-existing cracks under tension loading is performed by considering weak and strong grain boundaries with respect to grain interiors. Numerical results show that the effect of microstructure is significant for weak grain boundaries. On the other hand, for strong grain boundaries, the effect of microstructure is insignificant. The evaluated results have demonstrated that peridynamics can be a very good alternative numerical tool for fracture analysis of polycrystalline ice material.
When dealing with ice structure interaction modeling, such as designs for offshore structures/icebreakers or predicting ice cover’s bearing capacity for transportation, it is essential to determine the most important failure modes of ice. Structural properties, ice material properties, ice-structure interaction processes, and ice sheet geometries have significant effect on failure modes. In this paper two most frequently observed failure modes are studied; splitting failure mode for in-plane failure of finite ice sheet and out-of-plane failure of semi-infinite ice sheet. Peridynamic theory was used to determine the load necessary for inplane failure of a finite ice sheet. Moreover, the relationship between radial crack initiation load and measured out-of-plane failure load for a semi-infinite ice sheet is established. To achieve this, two peridynamic models are developed. First model is a 2 dimensional bond based peridynamic model of a plate with initial crack used for the in-plane case. Second model is based on a Mindlin plate resting on a Winkler elastic foundation formulation for out-of-plane case. Numerical results obtained using peridynamics are compared against experimental results and a good agreement between the two approaches is obtained confirming capability of peridynamics for predicting in-plane and out-of-plane failure of ice sheets.
Articular cartilage plays an important role in synovial joint function, but this function is diminished when cartilage tissue breaks down in osteoarthritis. Tissue engineering is a promising approach for replacing failed cartilage, as cartilage is a relatively simple tissue with no blood supply and very few biological cells. To imitate the structure of natural cartilage extracellular matrix material, three components must be included: the hydrated ground substance, the charges that contribute to compressive stiffness via electrostatic repulsion, and the nanofibrous collagen network that resists tensile deformation and failure. Here, the nanofiber network is considered, with examination of its fracture behavior in an as-electrospun state and following a mild chemical crosslinking process. Mode III fracture testing was used to quantify the tear toughness of the fibrous mats, and failure behavior was qualitatively examined with scanning electron microscopy. In ongoing work, this nanofibrous structure will be combined with a charged polyelectrolyte hydrogel gel to create a biomimetic cartilage-like material. By using biomimicry to replicate what is present in native cartilage tissue, a superior material can be designed and fabricated for use in tissue repair and replacement.