We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Kinetic theory is summarized as a mechanistic approach to thermodynamics, including the equilibrium state equation of an ideal gas and a phenomenological approach to its transport properties. The Boltzmann model of the ideal gas is described by the evolution equation of its distribution function in molecular space. The H-theorem is proved for both the uniform and nonuniform cases. The theorem of additive invariants allows to approach a fundamental formulation of hydrodynamic equations for both the ideal situation of an inviscid flow and for the more interesting case of a viscous flow.
Take anything in the universe, put it in a box, and heat it up. Regardless of what you start with, the motion of the substance will be described by the equations of fluid mechanics. This remarkable universality is the reason why fluid mechanics is important. The key equation of fluid mechanics is the Navier-Stokes equation. This textbook starts with the basics of fluid flows, building to the Navier-Stokes equation while explaining the physics behind the various terms and exploring the astonishingly rich landscape of solutions. The book then progresses to more advanced topics, including waves, fluid instabilities, and turbulence, before concluding by turning inwards and describing the atomic constituents of fluids. It introduces ideas of kinetic theory, including the Boltzmann equation, to explain why the collective motion of 1023 atoms is, under the right circumstances, always governed by the laws of fluid mechanics.
Statistical mechanics is hugely successful when applied to physical systems at thermodynamic equilibrium; however, most natural phenomena occur in nonequilibrium conditions and more sophisticated techniques are required to address this increased complexity. This second edition presents a comprehensive overview of nonequilibrium statistical physics, covering essential topics such as Langevin equations, Lévy processes, fluctuation relations, transport theory, directed percolation, kinetic roughening, and pattern formation. The first part of the book introduces the underlying theory of nonequilibrium physics, the second part develops key aspects of nonequilibrium phase transitions, and the final part covers modern applications. A pedagogical approach has been adopted for the benefit of graduate students and instructors, with clear language and detailed figures used to explain the relevant models and experimental results. With the inclusion of original material and organizational changes throughout the book, this updated edition will be an essential guide for graduate students and researchers in nonequilibrium thermodynamics.
This chapter begins with a formal definition of a fluid (what it means to be a continuum rather than an ensemble of particles) followed by a review of kinetic theory of gases where the connections between pressure and particle momentum and between specific energy (temperature) and average particle kinetic energy are made. A distinction is made between extensive and intensive variables, from which the Theorem of Hydrodynamics is postulated and proven. From this theorem, the basic equations of ideal hydrodynamics (zero-field limit of MHD) are derived including continuity, total energy equation, and the momentum equation. Alternate equations of HD such as the internal energy, pressure, and Euler’s equations are also introduced. The equations of HD are then assembled into two sets–conservative and primitive–with the distinction between the two explained.
We have established a novel molecular kinetic model that addresses fundamental challenges in the non-equilibrium transport of nanoscale confined fluids, such as rarefaction and fluid inhomogeneities, which are crucial to a range of scientific and engineering fields. The proposed model explicitly considers fluid–solid molecular interactions in the transport equations, eliminating the reliance on predefined boundary conditions. By consistently accounting for molecular interactions between fluids and solids, the unified model captures both intrinsic and apparent non-hydrodynamic effects, as well as real fluid behaviours. Rigorous comparisons with molecular dynamics simulations demonstrate that the present model accurately predicts unique features of strongly inhomogeneous fluid flows, including fluid adsorption, solvation force, velocity slip and temperature jump. Therefore, this mesoscopic model bridges the gap between molecular-scale dynamics and macroscopic hydrodynamics, enabling a practical simulation tool for nanoscale surface-confined flows. Moreover, it offers valuable insights into the molecular mechanisms underlying anomalous transport phenomena observed in confined flows, such as the disappearance and re-emergence of the Knudsen minimum.
This study presents a novel approach for constructing turbulence models using the kinetic Fokker–Planck equation. By leveraging the inherent similarities between Brownian motion and turbulent dynamics, we formulate a Fokker–Planck equation tailored for turbulence at the hydrodynamic level. In this model, turbulent energy plays a role analogous to temperature in molecular thermodynamics, and the large-scale structures are characterised by a turbulent relaxation time. This model aligns with the framework of Pope’s generalised Langevin model, with the first moment recovering the Reynolds-averaged Navier–Stokes (RANS) equations, and the second moment yielding a partially modelled Reynolds stress transport equation. Utilising the Chapman–Enskog expansion, we derive asymptotic solutions for this turbulent Fokker–Planck equation. With an appropriate choice of relaxation time, we obtain a linear eddy viscosity model at first order, and a quadratic Reynolds stress constitutive relationship at second order. Comparative analysis of the coefficients of the quadratic expression with typical nonlinear viscosity models reveals qualitative consistency. To further validate this kinetic-based nonlinear viscosity model, we integrate it as a RANS model within computational fluid dynamics codes, and calculate three typical cases. The results demonstrate that this quadratic eddy viscosity model outperforms the linear model and shows comparability to a cubic model for two-dimensional flows, without the introduction of ad hoc parameters in the Reynolds stress constitutive relationship.
A new lattice Boltzmann model (LBM) is presented to describe chemically reacting multicomponent fluid flow in homogenised porous media. In this work, towards further generalising the multicomponent reactive lattice Boltzmann model, we propose a formulation which is capable of performing reactive multicomponent flow computation in porous media at the representative elementary volume (REV) scale. To that end, the submodel responsible for interspecies diffusion has been upgraded to include Knudsen diffusion, whereas the kinetic equations for the species, the momentum and the energy have been rewritten to accommodate the effects of volume fraction of porous media through careful choice of the equilibrium distribution functions. Verification of the mesoscale kinetic system of equations by a Chapman–Enskog analysis reveals that at the macroscopic scale, the homogenised Navier–Stokes equations for compressible multicomponent reactive flows are recovered. The dusty gas model (DGM) capability hence formulated is validated over a wide pressure range by comparison of experimental flow rates of component species counter diffusing through capillary tubes. Next, for developing a capability to compute heterogeneous reactions, source terms for maintaining energy and mass balance across the fluid phase species and the surface adsorbed phase species are proposed. The complete model is then used to perform detailed chemistry simulations in porous electrodes of a solid oxide fuel cell (SOFC), thereby predicting polarisation curves which are of practical interest.
We develop the time-dependent regularised 13-moment equations for general elastic collision models under the linear regime. Detailed derivation shows the proposed equations have super-Burnett order for small Knudsen numbers, and the moment equations enjoy a symmetric structure. A new modification of Onsager boundary conditions is proposed to ensure stability as well as the removal of undesired boundary layers. Numerical examples of one-dimensional channel flows is conducted to verified our model.
Starting from the coupled Boltzmann–Enskog (BE) kinetic equations for a two-particle system consisting of hard spheres, a hyperbolic two-fluid model for binary, hard-sphere mixtures was derived in Fox (2019, J. Fluid Mech.877, 282). In addition to spatial transport, the BE kinetic equations account for particle–particle collisions, using an elastic hard-sphere collision model, and the Archimedes (buoyancy) force due to spatial gradients of the pressure in each phase, as well as other forces involving spatial gradients. The ideal-fluid–particle limit of this model is found by letting one of the particle diameters go to zero while the other remains finite. The resulting two-fluid model has closed terms for the spatial fluxes and momentum exchange due to the excluded volume occupied by the particles, e.g. a momentum-exchange term $\boldsymbol {F}_{\!\!fp}$ that depends on gradients of the fluid density $\rho _f$, fluid velocity $\boldsymbol{u}_{f}$ and fluid pressure $p_f$. In Zhang et al. (2006, Phy. Rev. Lett.97, 048301), the corresponding unclosed momentum-exchange term depends on the divergence of an unknown particle–fluid–particle (pfp) stress (or pressure) tensor. Here, it is shown that the pfp-pressure tensor ${\unicode{x1D64B}}_{\!pfp}$ can be found in closed form from the expression for $\boldsymbol {F}_{\!\!fp}$ derived in Fox (2019, J. Fluid Mech.877, 282). Remarkably, using this expression for ${\unicode{x1D64B}}_{\!pfp}$ ensures that the two-fluid model for ideal-fluid–particle flow is well posed for all fluid-to-particle material-density ratios $Z = \rho _f / \rho _p$.
Recent years have seen the emergence of new technologies that exploit nanoscale evaporation, ranging from nanoporous membranes for distillation to evaporative cooling in electronics. Despite the increasing depth of fundamental knowledge, there is still a lack of simulation tools capable of capturing the underlying non-equilibrium liquid–vapour phase changes that are critical to these and other such technologies. This work presents a molecular kinetic theory model capable of describing the entire flow field, i.e. the liquid and vapour phases and their interface, while striking a balance between accuracy and computational efficiency. In particular, unlike previous kinetic models based on the isothermal assumption, the proposed model can capture the temperature variations that occur during the evaporation process, yet does not require the computational resources of more complicated mean-field kinetic approaches. We assess the present kinetic model in three test cases: liquid–vapour equilibrium, evaporation into near-vacuum condition, and evaporation into vapour. The results agree well with benchmark solutions, while reducing the simulation time by almost two orders of magnitude on average in the cases studied. The results therefore suggest that this work is a stepping stone towards the development of an accurate and efficient computational approach to optimising the next generation of nanotechnologies based on nanoscale evaporation.
We employ the methods of statistical mechanics to obtain closures for the balance equations of momentum and fluctuation kinetic energy that govern the ballistic motion of grains rebounding at a rigid, bumpy bed that are driven by turbulent or non-turbulent shearing fluids, in the absence of mid-trajectory collisions and fluid velocity fluctuations. We obtain semi-analytical solutions for steady and fully developed saltation over horizontal beds for the vertical profiles of particle concentration and stresses and fluid and particle velocities. These compare favourably with measurements in discrete-element numerical simulations in the wide range of conditions of Earth and other planetary environments. The predictions of the particle horizontal mass flux and its scaling with the amount of particles in the system, the properties of the carrier fluid and the intensity of the shearing also agree with numerical simulations and wind-tunnel experiments.
Thermodynamics is the science that governs most of the basic, or ‘static’, properties of a system such as a gas. In this chapter we will be focusing on thermodynamics of the dry atmosphere. Water vapour is sufficiently important to deserve a separate chapter. A thermodynamic system is characterised by a small number of state variables, primarily density, pressure, and temperature. After defining these, we will see how they vary as we move up through the atmosphere. Two key equations – the hydrostatic equation and the ideal gas equation – interconnect these variables and their profiles. The First Law of Thermodynamics tells us how the atmosphere responds to an input of heat, as well as a change in pressure, which may come about with elevation (vertical motion). This is the key to the atmosphere’s vertical stability, and (ultimately) to cloud formation.
An open problem of the derivation of the relativistic Vlasov equation for systems of charged particles moving with velocities up to the speed of light and creating the electromagnetic field in accordance with the full set of the Maxwell equations is considered. Moreover, the method of derivation is illustrated on the non-relativistic kinetic model. Independent derivation of the relativistic hydrodynamics is also demonstrated. The key role of these derivations of the hydrodynamic and kinetic equations includes the explicit operator of averaging on the physically infinitesimal volume suggested by L.S. Kuzmenkov.
A thermodynamically consistent kinetic model is proposed for the non-equilibrium transport of confined van der Waals fluids, where the long-range molecular attraction is considered by a mean-field term in the transport equation, and the transport coefficients are tuned to match the experimental data. The equation of state of the van der Waals fluids can be obtained from an appropriate choice of the pair correlation function. By contrast, the modified Enskog theory predicts non-physical negative transport coefficients near the critical temperature and may not be able to recover the Boltzmann equation in the dilute limit. In addition, the shear viscosity and thermal conductivity are predicted more accurately by taking gas molecular attraction into account, while the softened Enskog formula for hard-sphere molecules performs better in predicting the bulk viscosity. The present kinetic model agrees with the Boltzmann model in the dilute limit and with the Navier–Stokes equations in the continuum limit, indicating its capability in modelling dilute-to-dense and continuum-to-non-equilibrium flows. The new model is examined thoroughly and validated by comparing it with the molecular dynamics simulation results. In contrast to the previous studies, our simulation results reveal the importance of molecular attraction even for high temperatures, which holds the molecules to the bulk while the hard-sphere model significantly overestimates the density near the wall. Because the long-range molecular attraction is considered appropriately in the present model, the velocity slip and temperature jump at the surface for the more realistic van der Waals fluids can be predicted accurately.
A microscale lubrication flow of a gas between eccentric circular cylinders is studied on the basis of kinetic theory. The dimensionless curvature, defined by the mean clearance divided by the radius of the inner cylinder, is small, and the rotation speed of the inner cylinder is also small. The Knudsen number, defined by the mean free path divided by the mean clearance, is arbitrary. The Boltzmann equation is studied analytically using the slowly varying approximation following the method proposed in the author's previous study (Doi, Phys. Rev. Fluids, vol. 7, 2022, 034201). A macroscopic lubrication equation, which is a microscale generalization of the Reynolds lubrication equation, is derived. To assess this, a direct numerical analysis of the Boltzmann equation in a bipolar coordinate system is conducted using the Bhatnagar–Gross–Krook–Welander kinetic equation. It is demonstrated that the solution of the derived lubrication equation approximates that of the Boltzmann equation over a wide range of the eccentricity and the whole range of the Knudsen number. It is also demonstrated that another lubrication equation derived by a formal application of the slowly varying approximation produces a non-negligible error of the order of the square root of the dimensionless curvature for large Knudsen numbers.
Sound wave propagation in rarefied flows of molecular gases confined in micro-channels is investigated numerically. We first validate the employed kinetic model against the experimental results and then systematically study the gas damping and surface force on the transducer as well as the resonance/anti-resonance in confined space. To quantify the impact of the finite relaxation rates of the translational and internal energies on wave propagation, we examine the roles of bulk viscosity and thermal conductivity in depth over a wide range of rarefactions and oscillation frequencies. It is found that the bulk viscosity only exerts influence on the pressure amplitude and its resonance frequency in the slip regime in high oscillations. In addition, the internal degree of freedom is frozen when the bulk viscosity of a molecular gas is large, resulting in the pressure amplitude of sound waves in the molecular gas being the same as in a monatomic gas. Meanwhile, the thermal conductivity has a limited influence on the pressure amplitude in all the simulated flows. In the case of the thermoacoustic wave, we prove that the Onsager–Casimir reciprocal relation also holds for molecular gases, i.e. the pressure deviation induced by the temperature variation is equal to the heat flux induced by the plate oscillation. Our findings enable an enhanced understanding of sound wave propagation in molecular gases, which may facilitate the design of nano-/micro-scale devices.
The present paper deals with the kinetic-theoretic description of the evolution of systems consisting of many particles interacting not only with each other but also with the external world, so that the equation governing their evolution contains an additional term representing such interaction, called the ‘forcing term’. Firstly, the interactions between pairs of particles are both conservative and nonconservative; the latter represents, among others, birth/death rates. The ‘forcing term’ does not express a ‘classical’ force exerted by the external world on the particles, but a more general influence on the effects of mutual interactions of particles, for instance, climate changes, that increase or decrease the different agricultural productions at different times, thus altering the economic relationships between different subsystems, that in turn can be also perturbed by stock market fluctuations, sudden wars, periodic epidemics, and so on. Thus, the interest towards these problems moves the mathematical analysis of the effects of different kinds of forcing terms on solutions to equations governing the collective (that is statistical) behaviour of such nonconservative many-particle systems. In the present paper, we offer a study of the basic mathematical properties of such solutions, along with some numerical simulations to show the effects of forcing terms for a classical prey–predator model in ecology.
Engineering flow systems operating under low pressures and/or at the micro/nano scale generally include a physically adsorbed gas layer next to the surface. In this paper, we develop a scattering kernel that accounts for the effect of adsorption, arising from van der Waals interactions, on the dynamics of molecules impinging on solid smooth surfaces. In the limit of low bulk density, surface adsorption becomes negligible and the scattering kernel recovers consistently the Cercignani–Lampis model, which best describes molecular collisions with a clean, smooth surface. In the limit of high bulk density, a dense adsorbed molecular layer forms next to the surface and its presence is picked up by the Maxwell model with complete diffuse reflection, which better captures the multiple collisions suffered by molecules. A weight coefficient based on the Langmuir adsorption isotherm is incorporated into the modelling to handle the transition between these two limiting conditions of low and high densities. The proposed model is validated against high-fidelity molecular dynamics simulations that are performed for a variety of gas–surface combinations and adsorbed molecular layers with different densities. It is shown that the proposed model very well captures the scattering patterns of beams of gas molecules at different velocities impinging on surfaces, as well as momentum and energy accommodation coefficients in the entire range of explored conditions.
Following the stability analysis method in classic fluid dynamics, a linear stability equation (LSE) suitable for rarefied flows is derived based on the Bhatnagar–Gross–Krook (BGK) equation. The global method and singular value decomposition method are used for modal and non-modal analysis, respectively. This approach is validated by results obtained from Navier–Stokes (NS) equations. The modal analysis shows that LSEs based on NS equations (NS-LSEs) begin to fail when the Knudsen number ($Kn$) increases past $\sim$0.01, regardless of whether a slip model is used. When $Kn\geq 0.01$, the growth rate of the least stable mode is generally underestimated by the NS-LSEs. Under a fixed wavenumber, the pattern (travelling or standing wave) of the least stable mode changes with $Kn$; when the mode presents the same pattern, the growth rate decreases almost linearly with increasing $Kn$; otherwise, rarefaction effects may not stabilize the flow. The characteristic lengths of the different modes are different, and the single-scale classic stability analysis method cannot predict multiple modes accurately, even when combined with a slip model and even for continuum flow. However, non-modal analysis shows that this error does not affect the transient growth because modes with small growth rates offer little contribution to the transient growth. In rarefied flow, as long as the Mach number ($Ma$) is large enough, transient growth will occur in some wavenumber ranges. The rarefaction effect plays a stabilizing role in transient growth. The NS-LSEs-based method always overestimates the maximum transient growth.
Kinetic models of polyatomic gas typically account for the internal degrees of freedom at the level of the two-particle distribution function. However, close to the hydrodynamic limit, the internal (rotational) degrees of freedom tend to be well represented just by rotational kinetic energy density. We account for the rotational energy by augmenting the ellipsoidal statistical Bhatnagar–Gross–Krook (ES–BGK) model, an extension of the BGK model, at the level of the single-particle distribution function with an advection–diffusion–relaxation equation for the rotational energy. This reduced model respects the $H$ theorem and recovers the compressible hydrodynamics for polyatomic gases as its macroscopic limit. As required for a polyatomic gas model, this extension of the ES–BGK model not only has the correct specific heat ratio but also allows for three independent tunable transport coefficients: thermal conductivity, shear viscosity and bulk viscosity. We illustrate the effectiveness of the model via a lattice Boltzmann method implementation.