We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.
We constructed a laser ablation (LA) system using a diode laser for the accelerator mass spectrometry radiocarbon (AMS 14C) measurement of organic materials. The system could extract adequate CO2 to analyze small masses (0.1 mg C) at a resolution of 250 µm by a 5.5 W diode laser. The LA system was assessed using standard materials (IAEA-C1, IAEA-C2, IAEA-C3, IAEA-C6, and Ox II) and applied to natural tree ring samples. For the LA sampling of organic samples, which generally results in incomplete combustion, tungsten (VI) oxide was used as an oxidant to achieve complete burning. The results of the measurement of standard materials showed a low 14C background of F14C 0.0085 ± 0.0005 and reasonable reproduction of 14C values. Finally, we applied this system to a single-year analysis of tree-ringed spruce timber in Alaska. It was observed to have a detectable background for the 14C bomb peak.
The development of a millimeter-wave transparent antenna integrated inside a headlamp for automotive radar application is presented. The antenna consists of two radiating elements: the primary and secondary ones. The primary antenna is the one that is fabricated on RF PCB material (e.g., patch, slot, sectoral horn) and connected directly to the transceiver chip, while the secondary antenna is made of optically transparent materials such as glass, but with a optical transparent electrically conductive coating, well known as transparent conductive oxide (TCO). This antenna is realized as a planar offset reflector to collimate and shape the incoming wave from the primary antenna. This reflector is designed based on the Fresnel theory and the reflectarray concept. The division of the primary and secondary antenna enables the placement of the radar module (that contains the primary antenna) at the base of the headlamp, and therefore it is concealed from the surroundings and hidden from the optical path of the light. The secondary antenna is inserted in the space between the headlamp cover and the light unit. The main challenge here is to provide a maximum on transparency in the visible range of the spectrum with a specially designed and laser-based generated microstructure for the resonant reflection of the radar wavelength. An antenna demonstrator has been fabricated, and together with the headlamp cover, the radiation pattern and realized gain are measured. We reported here the measurement results for several reflector designs and concluded that the headlamp cover gives minimal influence on the antenna performance.
Nasal obstruction and congestion can occur because of turbinate and septal variations with or without rhinitis. A combined treatment for nasal obstruction and congestion was examined retrospectively in cases where the nasal swell body was addressed with inferior turbinectomy, with or without posterior nasal nerve ablation.
Methods
A 940 nm laser was utilised for contact (nasal swell body, septum and inferior turbinate) and non-contact (posterior nasal nerve) ablation. Total Nasal Symptoms Score, visual analogue scale pain score, complications and procedure location (office vs operating theatre) were recorded.
Results
All 242 patients underwent nasal swell body reduction with inferior turbinate reduction, and 150 had posterior nasal nerve ablation also. No laser complications were observed. An 80 per cent reduction in medication usage was noted. Total Nasal Symptoms Score decreased by 73 per cent; rhinorrhoea and congestion scores decreased by 54 per cent and 81 per cent respectively. Crusting, epistaxis and infections were minimal, and resolved within two weeks.
Conclusion
Nasal swell body with inferior turbinate reduction, with or without posterior nasal nerve ablation, is a new method of treating nasal obstruction and congestion. Laser posterior nasal nerve ablation can be utilised as a complementary tool to deliver anatomical obstruction relief.
Compared to surgery, LITT provides minimal disruption of the brain matter, less post-operative pain and shorter length of stay. LITT has enabled a more minimalist approach to deep-seated targets such as the insula. Increasing utilization of stereoelectroencephalography has allowed for better identification of seizure onset involving the insular cortex and subsequent ablation, including many patients with prior surgeries involving the frontal, parietal, and temporal lobes. The insula serves as an ideal target for LITT, given the deep location and surrounding anatomic structures. There are limited studies on the efficacy of LITT in adults with lesional or non-lesional insular epilepsy. Retrospective LITT studies as well as comparisons with open surgical resection in the pediatric population have, however, shown good comparative efficacy while also demonstrating minimal, often transient, post-operative complications.
A 45-year-old female presents to the office with itching in the vulvar area. The symptoms have been present for several weeks and are progressively getting worse. She recently felt some skin thickening between the vaginal introitus and anus. Her history is remarkable for genital warts that resolved after cryotherapy 10 years ago. Additionally, she had a loop electrosurgical excision procedure (LEEP) procedure six years ago for severe cervical dysplasia but has had normal cervical cytology on follow-up.
In this work, lead halide perovskite photodetectors were fabricated by a laser-assisted rapid fabrication method. A microchannel was engraved on an indium tin oxide (ITO) coated polyethylene terephthalate (PET) conductive flexible substrate using a CO2 laser source. The channels were filled by methylammonium lead halide perovskite (CH3NH3PbI3) using the capillary motion of perovskite first-step method precursor. CYTOP and the low-cost commercially available FluroPel were used as a top protective coating layer to suppress the decomposition of the perovskite channel. X-ray diffraction pattern (XRD) was used to measure the stability of the perovskite. Strong humidity resistant and self-healing behavior were observed in both devices. The performance of the photodetectors was compared by measuring electrical and optical characteristics over time. This study will help in the low-cost fabrication of perovskite-based devices.
Nanocomposite hydrogels of poly-n-isopropyl were prepared by incorporating gold and magnetite nanoparticles. The nanocomposite-based hydrogels formed were geometrical, ∼7.3 mm in diameter and 5 mm thick (in the swollen state). Morphological analysis was characterized by a scanning electron microscope. Drug-loaded hydrogels were subjected to laser heating at 1 W, 1.5 W and 2 W for 20 min in each laser cycle. The metabolic activities of the cells were analysed. The photothermal conversion efficiency of the nanocomposite hydrogels was also evaluated for P(NIPA)-AuNP-PG and P(NIPA)-MNP-PG to be 36.93 and 32.57 %, respectively. The result was then discussed for potential applications whereby metal-based hydrogels can be employed in microfluidic devices for targeted cancer drug delivery.
Laser ablation (LA) accelerator mass spectrometry (AMS) is a novel method for rapid online radiocarbon (14C) analysis of carbonates. The quasi-continuous 14C profiles obtained with this technique demand a customized data evaluation protocol to relate the acquired 14C data to the analyzed sample. We take into account the mixing effects due to the minimal counting (integration) time of the AMS, the finite width of the laser beam and the gas washout of the ablation volume. Thereby we mathematically describe our LA setup with a system function that acts on the produced CO/CO2 (COX) from the sample resulting in a mixing of the 14C profiles obtained by AMS analysis. Furthermore, we analyze the long-term target memory effect in the gas ion source and establish a routine for correction. The correction routine is tested with a stalagmite comprising a growth stop that is analyzed at different scanning velocities indicating that only the slow scanning velocity can provide the necessary resolution to determine the width of the growth stop of 365 μm.
This chapter, reviews the basics for children undergoing epilepsy surgery. The authors discuss the incidence and types of seizures as well as various modalities for seizure suppression (e.g. ketogenic diet, vagal nerve stimulation). The chapter presents the surgical approaches to epilepsy surgery,MRI mapping followed by laser ablation and electrocorticography with mapping followed by surgical excision. The anesthetic implications related to these complex patients are presented.
Preparation of electron-transparent thin specimens can be costly in terms of time and is often challenging. Materials and products are becoming more complex, and device components are getting smaller each year. On the other hand, analysis and diagnostic methods become more exacting. Lack of time and high costs for diagnostics force companies to speed up, simplify, and customize the analysis process. Ultra-short-pulsed laser-based sample preparation can speed up the process and make possible new sample geometries. This article shows the advantages of this technology and how it can be used to prepare TEM lamellas (H-Bar) and multiple APT tips or pillars.
Flux waveforms of aluminum cluster beams supplied from a laser-ablation cluster source were precisely investigated under various source conditions such as background pressure, ablation laser intensity, and nozzle structure. A time-of-flight mass spectroscopy revealed that aluminum clusters with sizes up to 200 were generated and the amount of the clusters could be maximized by choosing a proper background pressure (~2 MPa) and an ablation laser fluence (~40 mJ/cm2). Flux waveforms of clusters having specific sizes were carefully reconstructed from the observed mass spectra. It is found that the pulse widths of the aluminum cluster beams were typically about 100 µs and much smaller than that of the monoatomic aluminum beam, indicating that the cluster formation was limited in a relatively small volume in the laser-ablated vapor. Introducing a conical nozzle having a large open angle was also found to enhance the cluster beam velocity and reduce its pulse width. A velocity measurement of particles in the cluster beam was conducted to examine the velocity spread of the supplied clusters. We found that the aluminum clusters were continuously released from the source for about 100 µs and this release time mainly determined the pulse width of the cluster beam, suggesting that controlling the behavior of an ablated vapor plume in the waiting room of the cluster source holds the key to drastically improving the cluster beam flux.
Ultrasonic sonochemistry and pulsed laser ablation in liquids (LAL) are modern techniques for materials synthesis that are in different ways linked to the formation and collapse of cavitation bubbles. We provide an overview of the physics of laser-induced and acoustically driven bubble oscillations and then describe how the high pressures and temperatures associated with ablation and bubble collapse, as well as emitted shock waves, take part in material synthesis inside and around the bubble. Emphasis is placed on the mechanisms of sonochemical synthesis and modification, and on a step-by-step account of the events from laser ablation through interaction of ablation products with the surrounding liquid up to the modification or aggregation of particles within the bubble. Both sonochemistry and LALs yield nanostructured materials and colloidal nanoparticles with unique properties. The synthesis process has been demonstrated to be scalable.
This study investigates the interaction of picosecond laser pulses with sapphire and brass in air using scanning electron microscopy. A picosecond laser system operating at a wavelength of 785 nm, pulse width of 110 ps, and variable repetition rate (1–1000 Hz) was used in this study. The pulse width applied in this work was not widely investigated as it lies in the gap between ultrashort (femtosecond) and long (nanosecond) pulse width lasers. Different surface morphologies were identified using secondary electron and backscattered electron imaging of the ablated material. Thermal ablation effects were more dominant in brass than in sapphire. Exfoliation and fractures of sapphire were observed at high laser fluence. Compared with brass, multiple laser pulses were necessary to initiate ablation in sapphire due to its poor absorption to the incident laser wavelength. Ablation rate of sapphire was lower than that of brass due to the dissipation of a portion of the laser energy due to heating and fracturing of the surface.
In order to diminish the occurrence of cavitation bubbles during the liquid-assisted laser machining, ultrasound-assisted underwater femtosecond laser drilling on stainless steel is adopted. This method greatly diminishes the optical disturbance of cavitation bubbles. By investigating and analyzing the effect of laser pulse energy and pulse number on the morphology of the holes, it has been found that ultrasound not only has a remarkable function of forming a hole with clean and flat bottom, but also reduces debris redeposition around the processing area. This method improves the machining quality. Besides, it also improves the depth-to-diameter ratio of the hole about 20%.
The homo- and heteroepitaxial deposition of LGS (langasite, La3Ga5SiO14) thin films on LGS single crystals, Si and SiO2 substrates by pulsed laser deposition (PLD) is demonstrated. PLD is performed at substrate temperatures up to about 700 °C and results initially in Ga deficient films. Two strategies of counterbalancing the Ga deficit are realized. First, off-stoichiometric targets with an enhanced Ga content are applied. Secondly, an increased oxygen partial pressure up to about 6 Pa is used during deposition to suppress evaporation of Ga suboxides. Combining these adaptions results in the growth of stoichiometric LGS thin films. Films deposited on LGS substrates do not show any additional X-ray diffraction reflexes nor broadening of the peaks with respect to the single crystalline substrates. Therefore, the homoepitaxial approach can be considered successful. The deposition on Si and SiO2 substrates under the same conditions leads to the formation of polycrystalline films. However, post-annealing at 800 °C increases crystallinity. Stoichiometry and homogeneous distribution of La, Ga and Si cations are confirmed by secondary neutral mass spectrometry (SNMS). The composition remains constant within the film, implying stable process parameters.
The effect of surface-enhanced Raman spectroscopy (SERS) was investigated in N719 dye thin films deposited on silicon wafer with a thin film of silver nanoparticles (Ag-NPs) fabricated by laser ablation in an aqueous solution, using a NdYAG laser (λ = 1064nm). Optical absorption spectroscopy of the Ag-NPs colloidal solution shows an absorption peak at λ = 400nm, associated with a localized surface plasmon resonance in the Ag-NPs. Scanning electron microscopy (SEM) reveals that these NPs have an approximately spherical shape, with their diameter being tunable by laser power intensity. Raman spectroscopy measurements were performed using low laser power to avoid damage to the N719 dye films. Thus, a small Raman signal is obtained. The Raman intensity was greatly increased when the N719 film was deposited on a substrate with a thin film of Ag-NPs due to the SERS effect. The process was also used in Rhodamine-B to clearly demonstrate the SERS effect obtained by the use of these NPs produced by laser ablation.
Single-phase multiferroic materials have attracted considerable attention among scientists, due to the strong drive in industry towards device miniaturization, addition of new functionalities, etc. Currently, most of the discovered materials have at-least one ferroic order active only at low temperatures, thereby hindering their induction into practical devices. κ-Al2O3-type AlxFe2-xO3 (x-AFO) oxides belong to a new class of metastable multiferroic compounds (space group: Pna21), with relatively high Curie temperatures. The current work investigates the effect of thin film deposition conditions on the ferroelectric and ferrimagnetic properties of Al0.5Fe1.5O3 (0.5-AFO). Substrate temperature and oxygen partial pressure during deposition were found to be the critical parameters in obtaining high quality films. Optimizing the deposition conditions of 0.5-AFO enabled observation of both ferroelectricity and ferrimagnetism at room temperature.
LIBS is a developing analytical technique, which is used to perform qualitative and semi-quantitative elemental analysis of materials (solid, liquid and gas). Recently LIBS became an attractive technique to be used for geological samples, due to its advantages such as fast data collection and the lack of sample preparation. This study is done to improve analytical methods for geochemical analysis of samples during different exploration phases (Mining, filed analysis, etc.), to be used in the future as a real-time analysis method to save money and time spent in labs. In this work, LIBS has been used to differentiate between some geological samples gathered from different areas: South Africa and Namibia. Using principal component analysis (PCA), it was found that LIBS was able to differentiate between the samples even those of the same area. The results from the LIBS technique were correlated with subsequent analysis of the same samples by Particle-Induced X-ray emission (PIXE).
Surface texturing of transparent conductive oxides is crucial to improve the fraction of incident light trapped in the absorber layer of thin film silicon based solar cells to improve the device performance. In this work, we fabricate and compare periodic, overlapping, and random surface textures and patterns on aluminium doped zinc oxide (AZO) using direct laser processing. The effects of the used laser wavelength, laser operating frequency, and pulse periodicity on the structural, morphological, and optical response of the AZO films were investigated. By optimizing the laser parameters and the associated process conditions, a drastic increase up to 60% in the transmittance haze over the entire solar was achieved.