We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter provides a critical reading of the current efforts to conserve marine biodiversity in a changing climate. The relationship between conservation and climate change is a complicated one due to the multiple entanglements between human and more-than human elements. This chapter discusses the extent to which the existing legal framework, presented in Chapter 2, promotes adaptative governance to conserve biodiversity in a changing climate and whether management practice follows suit. The doctrinal reading of the law is complemented by empirical insights gained through interviews with SNCBs and environmental NGOs as well as documentary analysis of key policies on implementation measures. It is argued that if the law provides for adaptive governance, its implementation in practice, that is adaptive management, is more problematic.
This book is the first ever written on English marine conservation regulation from a socio-legal perspective. The monograph presents an in-depth analysis of key aspects of Marine Protected Areas regulation in England, offering the reader access to an under-investigated field. Such regulatory mapping is complemented by an interdisciplinary treatment of the subject exploring the relationship between people and marine parks through central themes in environmental social sciences and regulatory theory, namely space, rationalisation, democracy and adaptation. Thus, the book is of interest to environmental lawyers and regulatory scholars but also to human geographers, environmental sociologists and political scientists. As the book provides critical reflections on current legal and regulatory structures, it contains valuable insights for policymakers and regulators. The book has a strong methodological basis drawing on in-depth desk-based research, complemented by primary qualitative research, conducted over a number of years.
We prove uniform Hölder regularity estimates for a transport-diffusion equation with a fractional diffusion operator and a general advection field in of bounded mean oscillation, as long as the order of the diffusion dominates the transport term at small scales; our only requirement is the smallness of the negative part of the divergence in some critical Lebesgue space. In comparison to a celebrated result by Silvestre, our advection field does not need to be bounded. A similar result can be obtained in the supercritical case if the advection field is Hölder continuous. Our proof is inspired by Kiselev and Nazarov and is based on the dual evolution technique. The idea is to propagate an atom property (i.e., localisation and integrability in Lebesgue spaces) under the dual conservation law, when it is coupled with the fractional diffusion operator.
A new linear and conservative finite difference scheme which preserves discrete mass and energy is developed for the two-dimensional Gross–Pitaevskii equation with angular momentum rotation. In addition to the energy estimate method and mathematical induction, we use the lifting technique as well as some well-known inequalities to establish the optimal $H^{1}$-error estimate for the proposed scheme with no restrictions on the grid ratio. Unlike the existing numerical solutions which are of second-order accuracy at the most, the convergence rate of the numerical solution is proved to be of order $O(h^{4}+\unicode[STIX]{x1D70F}^{2})$ with time step $\unicode[STIX]{x1D70F}$ and mesh size $h$. Numerical experiments have been carried out to show the efficiency and accuracy of our new method.
Anthropogenic climate change represents a wicked problem, both for the Earth’s natural systems and for biodiversity conservation law and policy. Legal frameworks for conservation have a critical role to play in helping species and ecosystems to adapt as the climate changes. However, they are currently poorly equipped to regulate adaptation strategies that demand high levels of human intervention. This article investigates law and policy for conservation introductions, which involve relocating species outside their historical habitat. It takes as a case study Australian law on conservation introductions, demonstrating theoretical and practical legal hurdles to these strategies at international, national and subnational levels. The article argues that existing legal mechanisms may be repurposed, in some cases, to better regulate conservation introduction projects. However, new legal mechanisms are also needed, and soon, to effectively conserve species and ecosystems in a period of unprecedented ecological change.
A simple characterization of the action of symmetries on conservation laws of partial differential equations is studied by using the general method of conservation law multipliers. This action is used to define symmetry-invariant and symmetry-homogeneous conservation laws. The main results are applied to several examples of physically interest, including the generalized Korteveg-de Vries equation, a non-Newtonian generalization of Burger's equation, the b-family of peakon equations, and the Navier–Stokes equations for compressible, viscous fluids in two dimensions.
In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [29]. Both limiters use information of the DG solutions only from the target cell and its immediate neighboring cells, thus maintaining the original compactness of the DG scheme. The goal of both limiters is to obtain high order accuracy and non-oscillatory properties simultaneously. The main novelty of the new HWENO limiter in this paper is to reconstruct the polynomial on the target cell in a least square fashion [8] while the simple WENO limiter [29] is to use the entire polynomial of the original DG solutions in the neighboring cells with an addition of a constant for conservation. The modification in this paper improves the robustness in the computation of problems with strong shocks or contact discontinuities, without changing the compact stencil of the DG scheme. Numerical results for both one and two dimensional equations including Euler equations of compressible gas dynamics are provided to illustrate the viability of this modified limiter.
The fourth order average vector field (AVF) method is applied to solve the “Good” Boussinesq equation. The semi-discrete system of the “good” Boussinesq equation obtained by the pseudo-spectral method in spatial variable, which is a classical finite dimensional Hamiltonian system, is discretizated by the fourth order average vector field method. Thus, a new high order energy conservation scheme of the “good” Boussinesq equation is obtained. Numerical experiments confirm that the new high order scheme can preserve the discrete energy of the “good” Boussinesq equation exactly and simulate evolution of different solitary waves well.
In this paper, we investigate the coupling of the Multi-dimensional Optimal Order Detection (MOOD) method and the Arbitrary high order DERivatives (ADER) approach in order to design a new high order accurate, robust and computationally efficient Finite Volume (FV) scheme dedicated to solve nonlinear systems of hyperbolic conservation laws on unstructured triangular and tetrahedral meshes in two and three space dimensions, respectively. The Multi-dimensional Optimal Order Detection (MOOD) method for 2D and 3D geometries has been introduced in a recent series of papers for mixed unstructured meshes. It is an arbitrary high-order accurate Finite Volume scheme in space, using polynomial reconstructions with a posteriori detection and polynomial degree decrementing processes to deal with shock waves and other discontinuities. In the following work, the time discretization is performed with an elegant and efficient one-step ADER procedure. Doing so, we retain the good properties of the MOOD scheme, that is to say the optimal high-order of accuracy is reached on smooth solutions, while spurious oscillations near singularities are prevented. The ADER technique permits not only to reduce the cost of the overall scheme as shown on a set of numerical tests in 2D and 3D, but it also increases the stability of the overall scheme. A systematic comparison between classical unstructured ADER-WENO schemes and the new ADER-MOOD approach has been carried out for high-order schemes in space and time in terms of cost, robustness, accuracy and efficiency. The main finding of this paper is that the combination of ADER with MOOD generally outperforms the one of ADER and WENO either because at given accuracy MOOD is less expensive (memory and/or CPU time), or because it is more accurate for a given grid resolution. A large suite of classical numerical test problems has been solved on unstructured meshes for three challenging multi-dimensional systems of conservation laws: the Euler equations of compressible gas dynamics, the classical equations of ideal magneto-Hydrodynamics (MHD) and finally the relativistic MHD equations (RMHD), which constitutes a particularly challenging nonlinear system of hyperbolic partial differential equation. All tests are run on genuinely unstructured grids composed of simplex elements.
In this paper, we present the use of the orthogonal spline collocation method for the semi-discretization scheme of the one-dimensional coupled nonlinear Schrödinger equations. This method uses the Hermite basis functions, by which physical quantities are approximated with their values and derivatives associated with Gaussian points. The convergence rate with order and the stability of the scheme are proved. Conservation properties are shown in both theory and practice. Extensive numerical experiments are presented to validate the numerical study under consideration.
We study the one-dimensional conservation law. We use a characteristic surface to define a class of functions, within which the integral version of the conservation law is solved in a simple and direct way. A simple algorithm for computing the unique solution is developed. The method uses the equal-area principle and yields the solution for any given time directly.
The homotopy analysis method (HAM) is applied to a nonlinear ordinary differential equation (ODE) emerging from a closure model of the von Kármán–Howarth equation which models the decay of isotropic turbulence. In the infinite Reynolds number limit, the von Kármán–Howarth equation admits a symmetry reduction leading to the aforementioned one-parameter ODE. Though the latter equation is not fully integrable, it can be integrated once for two particular parameter values and, for one of these values, the relevant boundary conditions can also be satisfied. The key result of this paper is that for the generic case, HAM is employed such that solutions for arbitrary parameter values are derived. We obtain explicit analytical solutions by recursive formulas with constant coefficients, using some transformations of variables in order to express the solutions in polynomial form. We also prove that the Loitsyansky invariant is a conservation law for the asymptotic form of the original equation.
This paper studies a family of finite volume schemes for the hyperbolic scalar conservation law $u_t +\nabla_g \cdotf(x,u)=0$ on a closed Riemannian manifold M.For an initial value in BV(M) we will show that these schemes converge with a $h^{\frac{1}{4}} $ convergence rate towards the entropy solution. When M is 1-dimensional the schemes are TVD and we will show that this improves the convergence rate to $h^{\frac{1}{2}}.$
This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq.3 (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial problem. We show the well-posedness of the scheme and the convergence of the numerical solution to the entropy solution of the continuous problem. Numerical simulations are presented in the framework of Riemann problems related to discontinuous transport equation, discontinuous Burgers equation, discontinuous LWR equation and discontinuous non-autonomous Buckley-Leverett equation (lubrication theory).
We consider the Euler equations for compressible fluidsin a nozzle whose cross-section is variable and may contain discontinuities.We view these equations as a hyperbolic system in nonconservative formand investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [J. Math. Pures Appl.74 (1995) 483–548].Observing that the entropy equality has a fully conservative form,we derive a minimum entropy principle satisfied by entropy solutions.We then establish the stability of a class of numerical approximations for this system.
We introduce a new model of cellular automaton called a one-dimensional number-conserving partitioned cellular automaton (NC-PCA). An NC-PCA is a system such that a state of a cell is represented by a triple of non-negative integers, and the total (i.e., sum) of integers over the configuration is conserved throughout its evolving (computing) process. It can be thought as a kind of modelization of the physical conservation law of mass (particles) or energy. We also define a reversible version of NC-PCA, and prove that a reversible NC-PCA is computation-universal. It is proved by showing that a reversible two-counter machine, which has been known to be universal, can be simulated by a reversible NC-PCA.
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a"rough"coefficient function k(x). We show that the Engquist-Osher (and hence all monotone)finite difference approximations convergeto the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general Lp compactness criterion.
We present here a return method to describe some attainable sets on an interval of the classical Burger equation by means of the variation of the domain.
The object studied in this paper is a pair (Φ, Y), where Φ is a random surface in and Y a random vector field on . The pair is jointly stationary, i.e. its distribution is invariant under translations. The vector field Y is smooth outside Φ but may have discontinuities on Φ. Gauss' divergence theorem is applied to derive a flow conservation law for Y. For this specializes to a well-known rate conservation law for point processes. As an application, relationships for the linear contact distribution of Φ are derived.
This paper considers single-server, multi-queue systems with cyclic service. Non-zero switch-over times of the server between consecutive queues are assumed. A stochastic decomposition for the amount of work in such systems is obtained. This decomposition allows a short derivation of a ‘pseudo-conservation law' for a weighted sum of the mean waiting times at the various queues. Thus several recently proved conservation laws are generalised and explained.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.