We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As a counterpart to Chapter 9 on category–measure duality, we focus here on a variety of situations in which duality fails. We cover a range of topics: Liouville numbers, Banach–Tarski (‘paradoxical’) decompositions, restriction and continuity, random series, normal numbers, topological and Hausdorff dimension, random Dirichlet series, filters, genericity, the Fubini and Kuratowski–Ulam theorems. We give an account of modern results on forcing, deferring technicalities to Chapter 16.
Let $[a_1(x),a_2(x),\ldots ,a_n(x),\ldots ]$ be the continued fraction expansion of $x\in [0,1)$ and $q_n(x)$ be the denominator of its nth convergent. The irrationality exponent and Khintchine exponent of x are respectively defined by
We study the multifractal spectrum of the irrationality exponent and the Khintchine exponent for continued fractions with nondecreasing partial quotients. For any $v>2$, we completely determine the Hausdorff dimensions of the sets $\{x\in [0,1): a_1(x)\leq a_2(x)\leq \cdots , \overline {v}(x)=v\}$ and
For $ \beta>1 $, let $ T_\beta $ be the $\beta $-transformation on $ [0,1) $. Let $ \beta _1,\ldots ,\beta _d>1 $ and let $ \mathcal P=\{P_n\}_{n\ge 1} $ be a sequence of parallelepipeds in $ [0,1)^d $. Define
When each $ P_n $ is a hyperrectangle with sides parallel to the axes, the ‘rectangle to rectangle’ mass transference principle by Wang and Wu [Mass transference principle from rectangles to rectangles in Diophantine approximation. Math. Ann.381 (2021) 243–317] is usually employed to derive the lower bound for $\dim _{\mathrm {H}} W(\mathcal P)$, where $\dim _{\mathrm {H}}$ denotes the Hausdorff dimension. However, in the case where $ P_n $ is still a hyperrectangle but with rotation, this principle, while still applicable, often fails to yield the desired lower bound. In this paper, we determine the optimal cover of parallelepipeds, thereby obtaining $\dim _{\mathrm {H}} W(\mathcal P)$. We also provide several examples to illustrate how the rotations of hyperrectangles affect $\dim _{\mathrm {H}} W(\mathcal P)$.
where $\langle \cdot \rangle $ denotes the distance from the nearest integral vector. In this article, we obtain upper bounds for the Hausdorff dimensions of the set of $\epsilon $-badly approximable matrices for fixed target b and the set of $\epsilon $-badly approximable targets for fixed matrix A. Moreover, we give a Diophantine condition of A equivalent to the full Hausdorff dimension of the set of $\epsilon $-badly approximable targets for fixed A. The upper bounds are established by effectivizing entropy rigidity in homogeneous dynamics, which is of independent interest. For the A-fixed case, our method also works for the weighted setting where the supremum norms are replaced by certain weighted quasinorms.
For $\lambda \in (0,\,1/2]$ let $K_\lambda \subset \mathbb {R}$ be a self-similar set generated by the iterated function system $\{\lambda x,\, \lambda x+1-\lambda \}$. Given $x\in (0,\,1/2)$, let $\Lambda (x)$ be the set of $\lambda \in (0,\,1/2]$ such that $x\in K_\lambda$. In this paper we show that $\Lambda (x)$ is a topological Cantor set having zero Lebesgue measure and full Hausdorff dimension. Furthermore, we show that for any $y_1,\,\ldots,\, y_p\in (0,\,1/2)$ there exists a full Hausdorff dimensional set of $\lambda \in (0,\,1/2]$ such that $y_1,\,\ldots,\, y_p \in K_\lambda$.
Feng and Huang [Variational principle for weighted topological pressure. J. Math. Pures Appl. (9)106 (2016), 411–452] introduced weighted topological entropy and pressure for factor maps between dynamical systems and established its variational principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod. Th. & Dynam. Sys.43 (2023), 1004–1034] redefined those invariants quite differently for the simplest case and showed via the variational principle that the two definitions coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy and pressure for higher dimensions, and prove the variational principle. Our result allows for an elementary calculation of the Hausdorff dimension of affine-invariant sets such as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary dimension.
Let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be the continued fraction expansion of an irrational number $x\in [0,1)$. We are concerned with the asymptotic behaviour of the product of consecutive partial quotients of x. We prove that, for Lebesgue almost all $x\in [0,1)$,
We also study the Baire category and the Hausdorff dimension of the set of points for which the above liminf and limsup have other different values and similarly analyse the weighted product of consecutive partial quotients.
We prove a multidimensional conformal version of the scale recurrence lemma of Moreira and Yoccoz [Stable intersections of regular Cantor sets with large Hausdorff dimensions. Ann. of Math. (2)154(1) (2001), 45–96] for Cantor sets in the complex plane. We then use this new recurrence lemma, together with Moreira’s ideas in [Geometric properties of images of Cartesian products of regular Cantor sets by differentiable real maps. Math. Z.303 (2023), 3], to prove that under the right hypothesis for the Cantor sets $K_1,\ldots ,K_n$ and the function $h:\mathbb {C}^{n}\to \mathbb {R}^{l}$, the following formula holds:
For every $n\geq 2$, Bourgain’s constant $b_n$ is the largest number such that the (upper) Hausdorff dimension of harmonic measure is at most $n-b_n$ for every domain in $\mathbb {R}^n$ on which harmonic measure is defined. Jones and Wolff (1988, Acta Mathematica 161, 131–144) proved that $b_2=1$. When $n\geq 3$, Bourgain (1987, Inventiones Mathematicae 87, 477–483) proved that $b_n>0$ and Wolff (1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton University Press, Princeton, NJ, 321–384) produced examples showing $b_n<1$. Refining Bourgain’s original outline, we prove that
We consider the attractor $\Lambda $ of a piecewise contracting map f defined on a compact interval. If f is injective, we show that it is possible to estimate the topological entropy of f (according to Bowen’s formula) and the Hausdorff dimension of $\Lambda $ via the complexity associated with the orbits of the system. Specifically, we prove that both numbers are zero.
In this paper, we study the dimension of planar self-affine sets, of which generating iterated function system (IFS) contains non-invertible affine mappings. We show that under a certain separation condition the dimension equals to the affinity dimension for a typical choice of the linear-parts of the non-invertible mappings, furthermore, we show that the dimension is strictly smaller than the affinity dimension for certain choices of parameters.
For integers a and $b\geq 2$, let $T_a$ and $T_b$ be multiplication by a and b on $\mathbb {T}=\mathbb {R}/\mathbb {Z}$. The action on $\mathbb {T}$ by $T_a$ and $T_b$ is called $\times a,\times b$ action and it is known that, if a and b are multiplicatively independent, then the only $\times a,\times b$ invariant and ergodic measure with positive entropy of $T_a$ or $T_b$ is the Lebesgue measure. However, it is not known whether there exists a non-trivial $\times a,\times b$ invariant and ergodic measure. In this paper, we study the empirical measures of $x\in \mathbb {T}$ with respect to the $\times a,\times b$ action and show that the set of x such that the empirical measures of x do not converge to any measure has Hausdorff dimension one and the set of x such that the empirical measures can approach a non-trivial $\times a,\times b$ invariant measure has Hausdorff dimension zero. Furthermore, we obtain some equidistribution result about the $\times a,\times b$ orbit of x in the complement of a set of Hausdorff dimension zero.
This paper seeks to build on the extensive connections that have arisen between automata theory, combinatorics on words, fractal geometry, and model theory. Results in this paper establish a characterization for the behavior of the fractal geometry of “k-automatic” sets, subsets of $[0,1]^d$ that are recognized by Büchi automata. The primary tools for building this characterization include the entropy of a regular language and the digraph structure of an automaton. Via an analysis of the strongly connected components of such a structure, we give an algorithmic description of the box-counting dimension, Hausdorff dimension, and Hausdorff measure of the corresponding subset of the unit box. Applications to definability in model-theoretic expansions of the real additive group are laid out as well.
The purpose of this study is two-fold. First, the Hausdorff dimension formula of the multidimensional multiplicative subshift (MMS) in $\mathbb {N}^d$ is presented. This extends the earlier work of Kenyon et al [Hausdorff dimension for fractals invariant under multiplicative integers. Ergod. Th. & Dynam. Sys.32(5) (2012), 1567–1584] from $\mathbb {N}$ to $\mathbb {N}^d$. In addition, the preceding work of the Minkowski dimension of the MMS in $\mathbb {N}^d$ is applied to show that their Hausdorff dimension is strictly less than the Minkowski dimension. Second, the same technique allows us to investigate the multifractal analysis of multiple ergodic average in $\mathbb {N}^d$. Precisely, we extend the result of Fan et al, [Multifractal analysis of some multiple ergodic averages. Adv. Math.295 (2016), 271–333] of the multifractal analysis of multiple ergodic average from $\mathbb {N}$ to $\mathbb {N}^d$.
Let $x\in [0,1)$ be an irrational number and let $x=[a_{1}(x),a_{2}(x),\ldots ]$ be its continued fraction expansion with partial quotients $\{a_{n}(x): n\geq 1\}$. Given a natural number m and a vector $(x_{1},\ldots ,x_{m})\in [0,1)^{m},$ we derive the asymptotic behaviour of the shortest distance function
$$ \begin{align*} M_{n,m}(x_{1},\ldots,x_{m})=\max\{k\in \mathbb{N}: a_{i+j}(x_{1})=\cdots= a_{i+j}(x_{m}) \ \text{for}~ j=1,\ldots,k \mbox{ and some } i \mbox{ with } 0\leq i \leq n-k\}, \end{align*} $$
which represents the run-length of the longest block of the same symbol among the first n partial quotients of $(x_{1},\ldots ,x_{m}).$ We also calculate the Hausdorff dimension of the level sets and exceptional sets arising from the shortest distance function.
Strong Turing Determinacy, or ${\mathrm {sTD}}$, is the statement that for every set A of reals, if $\forall x\exists y\geq _T x (y\in A)$, then there is a pointed set $P\subseteq A$. We prove the following consequences of Turing Determinacy (${\mathrm {TD}}$) and ${\mathrm {sTD}}$ over ${\mathrm {ZF}}$—the Zermelo–Fraenkel axiomatic set theory without the Axiom of Choice:
(1)${\mathrm {ZF}}+{\mathrm {TD}}$ implies $\mathrm {wDC}_{\mathbb {R}}$—a weaker version of $\mathrm {DC}_{\mathbb {R}}$.
(2)${\mathrm {ZF}}+{\mathrm {sTD}}$ implies that every set of reals is measurable and has Baire property.
(3)${\mathrm {ZF}}+{\mathrm {sTD}}$ implies that every uncountable set of reals has a perfect subset.
(4)${\mathrm {ZF}}+{\mathrm {sTD}}$ implies that for every set of reals A and every $\epsilon>0$:
(a) There is a closed set $F\subseteq A$ such that $\mathrm {Dim_H}(F)\geq \mathrm {Dim_H}(A)-\epsilon $, where $\mathrm {Dim_H}$ is the Hausdorff dimension.
(b) There is a closed set $F\subseteq A$ such that $\mathrm {Dim_P}(F)\geq \mathrm {Dim_P}(A)-\epsilon $, where $\mathrm {Dim_P}$ is the packing dimension.
We first show with proofs the basic and fundamental concepts and theorems from abstract and geometric measure theory. These include, in particular, the three classical covering theorems: 4r, Besicovitch, and Vitali type. We also include a short section on probability theory: conditional expectations and Martingale Theorems. We devote quite a significant amount of space to treating Hausdorff and packing measures. In particular, we formulate and prove Frostman Converse Lemmas, which form an indispensable tool for proving that a Hausdorff or packing measure is finite, positive, or infinite. Some of these are frequently called, in particular in the fractal geometry literature, the mass redistribution principle, but these lemmas involve no mass redistribution. We then deal with Hausdorff, packing, box counting, and dimensions of sets and measures, and provide tools to calculate and estimate them.
The main objective of this paper is to answer the questions posed by Robinson and Sadowski [22, p. 505, Commun. Math. Phys., 2010] for the Navier–Stokes equations. Firstly, we prove that the upper box dimension of the potential singular points set $\mathcal {S}$ of suitable weak solution $u$ belonging to $L^{q}(0,T;L^{p}(\mathbb {R}^{3}))$ for $1\leq \frac {2}{q}+\frac {3}{p}\leq \frac 32$ with $2\leq q<\infty$ and $2< p<\infty$ is at most $\max \{p,q\}(\frac {2}{q}+\frac {3}{p}-1)$ in this system. Secondly, it is shown that $1-2s$ dimension Hausdorff measure of potential singular points set of suitable weak solutions satisfying $u\in L^{2}(0,T;\dot {H}^{s+1}(\mathbb {R}^{3}))$ for $0\leq s\leq \frac 12$ is zero, whose proof relies on Caffarelli–Silvestre's extension. Inspired by Barker–Wang's recent work [1], this further allows us to discuss the Hausdorff dimension of potential singular points set of suitable weak solutions if the gradient of the velocity is under some supercritical regularity.
In this paper, we study the Hausdorff dimension of sets defined by almost convergent binary expansion sequences. More precisely, the Hausdorff dimension of the following set
\begin{align*} \bigg\{x\in[0,1)\;:\;\frac{1}{n}\sum_{k=a}^{a+n-1}x_{k}\longrightarrow\alpha\textrm{ uniformly in }a\in\mathbb{N}\textrm{ as }n\rightarrow\infty\bigg\} \end{align*}
is determined for any $ \alpha\in[0,1] $. This completes a question considered by Usachev [Glasg. Math. J.64 (2022), 691–697] where only the dimension for rational $ \alpha $ is given.