We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we provide an application to the random distance-t walk in finite planes and derive asymptotic formulas (as $q \to \infty $) for the probability of return to start point after $\ell $ steps based on the “vertical” equidistribution of Kloosterman sums established by N. Katz. This work relies on a “Euclidean” association scheme studied in prior work of W. M. Kwok, E. Bannai, O. Shimabukuro, and H. Tanaka. We also provide a self-contained computation of the P-matrix and intersection numbers of this scheme for convenience in our application as well as a more explicit form for the intersection numbers in the planar case.
In this paper, we consider the friendship paradox in the context of random walks and paths. Among our results, we give an equality connecting long-range degree correlation, degree variability, and the degree-wise effect of additional steps for a random walk on a graph. Random paths are also considered, as well as applications to acquaintance sampling in the context of core-periphery structure.
We derive conditions for recurrence and transience for time-inhomogeneous birth-and-death processes considered as random walks with positively biased drifts. We establish a general result, from which the earlier known particular results by Menshikov and Volkov [‘Urn-related random walk with drift $\rho x^\alpha /t^\beta $’, Electron. J. Probab.13 (2008), 944–960] follow.
We prove that for a vast class of random walks on a compactly generated group, the exponential growth of convolutions of a probability density function along almost every sample path is bounded by the growth of the group. As an application, we show that the almost sure and $L^1$ convergences of the Shannon–McMillan–Breiman theorem hold for compactly supported random walks on compactly generated groups with subexponential growth.
In this paper we study the asymptotic behaviour of a random uniform parking function $\pi_n$ of size n. We show that the first $k_n$ places $\pi_n(1),\ldots,\pi_n(k_n)$ of $\pi_n$ are asymptotically independent and identically distributed (i.i.d.) and uniform on $\{1,2,\ldots,n\}$, for the total variation distance when $k_n = {\rm{o}}(\sqrt{n})$, and for the Kolmogorov distance when $k_n={\rm{o}}(n)$, improving results of Diaconis and Hicks. Moreover, we give bounds for the rate of convergence, as well as limit theorems for certain statistics such as the sum or the maximum of the first $k_n$ parking places. The main tool is a reformulation using conditioned random walks.
We present a reflection principle for a wide class of symmetric random motions with finite velocities. We propose a deterministic argument which is then applied to trajectories of stochastic processes. In the case of symmetric correlated random walks and the symmetric telegraph process, we provide a probabilistic result recalling the classical reflection principle for Brownian motion, but where the initial velocity has a crucial role. In the case of the telegraph process we also present some consequences which lead to further reflection-type characteristics of the motion.
We prove new mixing rate estimates for the random walks on homogeneous spaces determined by a probability distribution on a finite group
$G$
. We introduce the switched random walk determined by a finite set of probability distributions on
$G$
, prove that its long-term behaviour is determined by the Fourier joint spectral radius of the distributions, and give Hermitian sum-of-squares algorithms for the effective estimation of this quantity.
This is the second of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this second paper, we restrict our attention to non-spectrally degenerate random walks and we prove precise asymptotics of the probability $p_n(e,e)$ of going back to the origin at time $n$. We combine techniques adapted from thermodynamic formalism with the rough estimates of the Green function given by part I to show that $p_n(e,e)\sim CR^{-n}n^{-3/2}$, where $R$ is the inverse of the spectral radius of the random walk. This both generalizes results of Woess for free products and results of Gouëzel for hyperbolic groups.
We study an open discrete-time queueing network. We assume data is generated at nodes of the network as a discrete-time Bernoulli process. All nodes in the network maintain a queue and relay data, which is to be finally collected by a designated sink. We prove that the resulting multidimensional Markov chain representing the queue size of nodes has two behavior regimes depending on the value of the rate of data generation. In particular, we show that there is a nontrivial critical value of the data rate below which the chain is ergodic and converges to a stationary distribution and above which it is non-ergodic, i.e., the queues at the nodes grow in an unbounded manner. We show that the rate of convergence to stationarity is geometric in the subcritical regime.
We describe here a notion of diffusion similarity, a method for defining similarity between vertices in a given graph using the properties of random walks on the graph to model the relationships between vertices. Using the approach of graph vertex embedding, we characterize a vertex vi by considering two types of diffusion patterns: the ways in which random walks emanate from the vertex vi to the remaining graph and how they converge to the vertex vi from the graph. We define the similarity of two vertices vi and vj as the average of the cosine similarity of the vectors characterizing vi and vj. We obtain these vectors by modifying the solution to a differential equation describing a type of continuous time random walk.
This method can be applied to any dataset that can be assigned a graph structure that is weighted or unweighted, directed or undirected. It can be used to represent similarity of vertices within community structures of a network while at the same time representing similarity of vertices within layered substructures (e.g., bipartite subgraphs) of the network. To validate the performance of our method, we apply it to synthetic data as well as the neural connectome of the C. elegans worm and a connectome of neurons in the mouse retina. A tool developed to characterize the accuracy of the similarity values in detecting community structures, the uncertainty index, is introduced in this paper as a measure of the quality of similarity methods.
We consider random walks on the group of orientation-preserving homeomorphisms of the real line
${\mathbb R}$
. In particular, the fundamental question of uniqueness of an invariant measure of the generated process is raised. This problem was studied by Choquet and Deny [Sur l’équation de convolution
$\mu = \mu * \sigma $
. C. R. Acad. Sci. Paris250 (1960), 799–801] in the context of random walks generated by translations of the line. Nowadays the answer is quite well understood in general settings of strongly contractive systems. Here we focus on a broader class of systems satisfying the conditions of recurrence, contraction and unbounded action. We prove that under these conditions the random process possesses a unique invariant Radon measure on
${\mathbb R}$
. Our work can be viewed as following on from Babillot et al [The random difference equation
$X_n=A_n X_{n-1}+B_n$
in the critical case. Ann. Probab.25(1) (1997), 478–493] and Deroin et al [Symmetric random walk on
$\mathrm {HOMEO}^{+}(\mathbb {R})$
. Ann. Probab.41(3B) (2013), 2066–2089].
This is the first of a series of two papers dealing with local limit theorems in relatively hyperbolic groups. In this first paper, we prove rough estimates for the Green function. Along the way, we introduce the notion of relative automaticity which will be useful in both papers and we show that relatively hyperbolic groups are relatively automatic. We also define the notion of spectral positive recurrence for random walks on relatively hyperbolic groups. We then use our estimates for the Green function to prove that
$p_n\asymp R^{-n}n^{-3/2}$
for spectrally positive-recurrent random walks, where
$p_n$
is the probability of going back to the origin at time n and where R is the inverse of the spectral radius of the random walk.
Personalized PageRank has found many uses in not only the ranking of webpages, but also algorithmic design, due to its ability to capture certain geometric properties of networks. In this paper, we study the diffusion of PageRank: how varying the jumping (or teleportation) constant affects PageRank values. To this end, we prove a gradient estimate for PageRank, akin to the Li–Yau inequality for positive solutions to the heat equation (for manifolds, with later versions adapted to graphs).
We study the long-term behaviour of a random walker embedded in a growing sequence of graphs. We define a (generally non-Markovian) real-valued stochastic process, called the knowledge process, that represents the ratio between the number of vertices already visited by the walker and the current size of the graph. We mainly focus on the case where the underlying graph sequence is the growing sequence of complete graphs.
In this Element, we extend our earlier treatment of biology's first law. The law says that in any evolutionary system in which there is variation and heredity, there is a tendency for diversity and complexity to increase. The law plays the same role in biology that Newton's first law plays in physics, explaining what biological systems are expected to do when no forces act, in other words, what happens when nothing happens. Here we offer a deeper explanation of certain features of the law, develop a quantitative version of it, and explore its consequences for our understanding of diversity and complexity.
Let $p_{n}(x)=\int _{0}^{\infty }J_{0}(xt)[J_{0}(t)]^{n}xt\,dt$ be Kluyver’s probability density for $n$-step uniform random walks in the Euclidean plane. Through connection to a similar problem in two-dimensional quantum field theory, we evaluate the third-order derivative $p_{5}^{\prime \prime \prime }(0^{+})$ in closed form, thereby giving a new proof for a conjecture of J. M. Borwein. By further analogies to Feynman diagrams in quantum field theory, we demonstrate that $p_{n}(x),0\leq x\leq 1$ admits a uniformly convergent Maclaurin expansion for all odd integers $n\geq 5$, thus settling another conjecture of Borwein.
Recently there has been significant work in the social sciences involving ensembles of social networks, that is, multiple, independent, social networks such as students within schools or employees within organizations. There remains, however, very little methodological work on exploring these types of data structures. We present methods for clustering social networks with observed nodal class labels, based on statistics of walk counts between the nodal classes. We extend this method to consider only non-backtracking walks, and introduce a method for normalizing the counts of long walk sequences using those of shorter ones. We then present a method for clustering networks based on these statistics to explore similarities among networks. We demonstrate the utility of this method on simulated network data, as well as on advice-seeking networks in education.
We prove a lower bound on the difference between the spectral radius of the Cayley graph of a group $G$ and the spectral radius of the Schreier graph $H\backslash G$ for any subgroup $H$. As an application, we extend Kesten’s theorem on spectral radii to uniformly recurrent subgroups and give a short proof that the result of Lyons and Peres on cycle density in Ramanujan graphs [Lyons and Peres. Cycle density in infinite Ramanujan graphs. Ann. Probab.43(6) (2015), 3337–3358, Theorem 1.2] holds on average. More precisely, we show that if ${\mathcal{G}}$ is an infinite deterministic Ramanujan graph then the time spent in short cycles by a random trajectory of length $n$ is $o(n)$.
We consider a class of skew product maps of interval diffeomorphisms over the doubling map. The interval maps fix the end points of the interval. It is assumed that the system has zero fiber Lyapunov exponent at one endpoint and zero or positive fiber Lyapunov exponent at the other endpoint. We prove the appearance of on–off intermittency. This is done using the equivalent description of chaotic walks: random walks driven by the doubling map. The analysis further relies on approximating the chaotic walks by Markov random walks, that are constructed using Markov partitions for the doubling map.
This paper studies the friendship paradox for weighted and directed networks, from a probabilistic perspective. We consolidate and extend recent results of Cao and Ross and Kramer, Cutler and Radcliffe, to weighted networks. Friendship paradox results for directed networks are given; connections to detailed balance are considered.