We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A semigroup S is said to be right pseudo-finite if the universal right congruence can be generated by a finite set $U\subseteq S\times S$, and there is a bound on the length of derivations for an arbitrary pair $(s,t)\in S\times S$ as a consequence of those in U. This article explores the existence and nature of a minimal ideal in a right pseudo-finite semigroup. Continuing the theme started in an earlier work by Dandan et al., we show that in several natural classes of monoids, right pseudo-finiteness implies the existence of a completely simple minimal ideal. This is the case for orthodox monoids, completely regular monoids, and right reversible monoids, which include all commutative monoids. We also show that certain other conditions imply the existence of a minimal ideal, which need not be completely simple; notably, this is the case for semigroups in which one of the Green’s preorders ${\leq _{\mathcal {L}}}$ or ${\leq _{\mathcal {J}}}$ is left compatible with multiplication. Finally, we establish a number of examples of pseudo-finite monoids without a minimal ideal. We develop an explicit construction that yields such examples with additional desired properties, for instance, regularity or ${\mathcal {J}}$-triviality.
The dynamics of the fragmentation equation with size diffusion is investigated when the size ranges in
$(0,\infty)$
. The associated linear operator involves three terms and can be seen as a nonlocal perturbation of a Schrödinger operator. A Miyadera perturbation argument is used to prove that it is the generator of a positive, analytic semigroup on a weighted
$L_1$
-space. Moreover, if the overall fragmentation rate does not vanish at infinity, then there is a unique stationary solution with given mass. Assuming further that the overall fragmentation rate diverges to infinity for large sizes implies the immediate compactness of the semigroup and that it eventually stabilizes at an exponential rate to a one-dimensional projection carrying the information of the mass of the initial value.
We call a semigroup $S$weakly right noetherian if every right ideal of $S$ is finitely generated; equivalently, $S$ satisfies the ascending chain condition on right ideals. We provide an equivalent formulation of the property of being weakly right noetherian in terms of principal right ideals, and we also characterize weakly right noetherian monoids in terms of their acts. We investigate the behaviour of the property of being weakly right noetherian under quotients, subsemigroups and various semigroup-theoretic constructions. In particular, we find necessary and sufficient conditions for the direct product of two semigroups to be weakly right noetherian. We characterize weakly right noetherian regular semigroups in terms of their idempotents. We also find necessary and sufficient conditions for a strong semilattice of completely simple semigroups to be weakly right noetherian. Finally, we prove that a commutative semigroup $S$ with finitely many archimedean components is weakly (right) noetherian if and only if $S/\mathcal {H}$ is finitely generated.
Taking residual finiteness as a starting point, we consider three related finiteness properties: weak subsemigroup separability, strong subsemigroup separability and complete separability. We investigate whether each of these properties is inherited by Schützenberger groups. The main result of this paper states that for a finitely generated commutative semigroup S, these three separability conditions coincide and are equivalent to every
$\mathcal {H}$
-class of S being finite. We also provide examples to show that these properties in general differ for commutative semigroups and finitely generated semigroups. For a semigroup with finitely many
$\mathcal {H}$
-classes, we investigate whether it has one of these properties if and only if all its Schützenberger groups have the property.
We prove that the annihilating-ideal graph of a commutative semigroup with unity is, in general, not weakly perfect. This settles the conjecture of DeMeyer and Schneider [‘The annihilating-ideal graph of commutative semigroups’, J. Algebra469 (2017), 402–420]. Further, we prove that the zero-divisor graphs of semigroups with respect to semiprime ideals are weakly perfect. This enables us to produce a large class of examples of weakly perfect zero-divisor graphs from a fixed semigroup by choosing different semiprime ideals.
Subshifts with property $(A)$ are constructed from a class of directed graphs. As special cases the Markov–Dyck shifts are shown to have property $(A)$. The semigroups that are associated to ${\mathcal{R}}$-graph shifts with Property $(A)$ are determined.
In this paper, we initiate the study of fixed point properties of amenable or reversible semitopological semigroups in modular spaces. Takahashi’s fixed point theorem for amenable semigroups of nonexpansive mappings, and T. Mitchell’s fixed point theorem for reversible semigroups of nonexpansive mappings in Banach spaces are extended to the setting of modular spaces. Among other things, we also generalize another classical result due to Mitchell characterizing the left amenability property of the space of left uniformly continuous functions on semitopological semigroups by introducing the notion of a semi-modular space as a generalization of the concept of a locally convex space.
Let $T_{n}(\mathbb{F})$ be the semigroup of all upper triangular $n\times n$ matrices over a field $\mathbb{F}$. Let $UT_{n}(\mathbb{F})$ and $UT_{n}^{\pm 1}(\mathbb{F})$ be subsemigroups of $T_{n}(\mathbb{F})$, respectively, having $0$s and/or $1$s on the main diagonal and $0$s and/or $\pm 1$s on the main diagonal. We give some sufficient conditions under which an involution semigroup is nonfinitely based. As an application, we show that $UT_{2}(\mathbb{F}),UT_{2}^{\pm 1}(\mathbb{F})$ and $T_{2}(\mathbb{F})$ as involution semigroups under the skew transposition are nonfinitely based for any field $\mathbb{F}$.
In this paper, we study the boundary quotient $\text{C}^{\ast }$-algebras associated with products of odometers. One of our main
results shows that the boundary quotient $\text{C}^{\ast }$-algebra of the standard product of $k$ odometers over $n_{i}$-letter alphabets $(1\leqslant i\leqslant k)$ is always nuclear, and that it is a UCT Kirchberg algebra if and
only if $\{\ln n_{i}:1\leqslant i\leqslant k\}$ is rationally independent, if and only if the associated
single-vertex $k$-graph $\text{C}^{\ast }$-algebra is simple. To achieve this, one of our main steps is to
construct a topological $k$-graph such that its associated Cuntz–Pimsner $\text{C}^{\ast }$-algebra is isomorphic to the boundary quotient $\text{C}^{\ast }$-algebra. Some relations between the boundary quotient $\text{C}^{\ast }$-algebra and the $\text{C}^{\ast }$-algebra $\text{Q}_{\mathbb{N}}$ introduced by Cuntz are also investigated.
The set of row reduced matrices (and of echelon form matrices) is closed under multiplication. We show that any system of representatives for the $\text{Gl}_{n}(\mathbb{K})$ action on the $n\times n$ matrices, which is closed under multiplication, is necessarily conjugate to one that is in simultaneous echelon form. We call such closed representative systems Grassmannian semigroups. We study internal properties of such Grassmannian semigroups and show that they are algebraic semigroups and admit gradings by the finite semigroup of partial order preserving permutations, with components that are naturally in one–one correspondence with the Schubert cells of the total Grassmannian. We show that there are infinitely many isomorphism types of such semigroups in general, and two such semigroups are isomorphic exactly when they are semiconjugate in $M_{n}(\mathbb{K})$. We also investigate their representation theory over an arbitrary field, and other connections with multiplicative structures on Grassmannians and Young diagrams.
for functions $f$ and $h$ mapping a semigroup $(G,\cdot )$ into a commutative semigroup $(E,+)$, where the map $\unicode[STIX]{x1D70E}:G\rightarrow G$ is an endomorphism of $G$ with $\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D70E}(x))=x$ for all $x\in G$. We derive from these results some characterisations of inner product spaces. We also obtain a description of solutions to the equation and hyperstability results for the $\unicode[STIX]{x1D70E}$-quadratic and $\unicode[STIX]{x1D70E}$-Drygas equations.
We consider first-order hyperbolic systems on an interval with dynamic boundary conditions. These systems occur when the ordinary differential equation dynamics on the boundary interact with the waves in the interior. The well-posedness for linear systems is established using an abstract Friedrichs theorem. Due to the limited regularity of the coefficients, we need to introduce the appropriate space of test functions for the weak formulation. It is shown that the weak solutions exhibit a hidden regularity at the boundary as well as at interior points. As a consequence, the dynamics of the boundary components satisfy an additional regularity. Neither result can be achieved from standard semigroup methods. Nevertheless, we show that our weak solutions and the semigroup solutions coincide. For illustration, we give three particular physical examples that fit into our framework.
We show that every finitely generated algebra that is a finitely generated module over a finitely generated commutative subalgebra is an automaton algebra in the sense of Ufnarovskii.
We introduce the concepts of growth and spectral bound for strongly continuous semigroups acting on Fréchet spaces and show that the Banach space inequality s(A) ⩽ ω0(T) extends to the new setting. Via a concrete example of an even uniformly continuous semigroup, we illustrate that for Fréchet spaces effects with respect to these bounds may happen that cannot occur on a Banach space.
We give a sufficient condition under which a semigroup is nonfinitely based. As an application, we show that a certain variety is nonfinitely based, and we indicate the additional analysis (to be presented in a forthcoming paper), which shows that this example is a new limit variety of aperiodic monoids.
In this paper, for an arbitrary $\ell ^{1}$-Munn algebra $\mathfrak{A}$ over a Banach algebra $A$ with a sandwich matrix $P$, we characterise all homomorphisms from $\mathfrak{A}$ to a commutative Banach algebra $B$. Especially, we study the character space of this algebra. Then, as an application, its character amenability is investigated. Finally, we apply these results to certain semigroups, which are called Rees matrix semigroups.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}S$ be a semigroup. Elements $a,b$ of $S$ are $\widetilde{\mathscr{R}}$-related if they have the same idempotent left identities. Then $S$ is weakly left ample if (1) idempotents of $S$ commute, (2) $\widetilde{\mathscr{R}}$ is a left congruence, (3) for any $a \in S$, $a$ is $\widetilde{\mathscr{R}}$-related to a (unique) idempotent, say $a^+$, and (4) for any element $a$ and idempotent $e$ of $S$, $ae=(ae)^+a$. Elements $a,b$ of $S$ are $\mathscr{R}^*$-related if, for any $x,y \in S^1$, $xa=ya$ if and only if $xb=yb$. Then $S$ is left ample if it satisfies (1), (3) and (4) relative to $\mathscr{R}^*$ instead of $\widetilde{\mathscr{R}}$. Further, $S$ is (weakly) ample if it is both (weakly) left and right ample. We establish several characterizations of these classes of semigroups. For weakly left ample ones we provide a construction of all such semigroups with zero all of whose nonzero idempotents are primitive. Among characterizations of weakly ample semigroups figure (strong) semilattices of unipotent monoids, and among those for ample semigroups, (strong) semilattices of cancellative monoids. This describes the structure of these two classes of semigroups in an optimal way, while, for the ‘one-sided’ case, the problem of structure remains open.
Suppose that ${\Gamma }^{+ } $ is the positive cone of a totally ordered abelian group $\Gamma $, and $(A, {\Gamma }^{+ } , \alpha )$ is a system consisting of a ${C}^{\ast } $-algebra $A$, an action $\alpha $ of ${\Gamma }^{+ } $ by extendible endomorphisms of $A$. We prove that the partial-isometric crossed product $A\hspace{0.167em} { \mathop{\times }\nolimits}_{\alpha }^{\mathrm{piso} } \hspace{0.167em} {\Gamma }^{+ } $ is a full corner in the subalgebra of $\L ({\ell }^{2} ({\Gamma }^{+ } , A))$, and that if $\alpha $ is an action by automorphisms of $A$, then it is the isometric crossed product $({B}_{{\Gamma }^{+ } } \otimes A)\hspace{0.167em} {\mathop{\times }\nolimits }^{\mathrm{iso} } \hspace{0.167em} {\Gamma }^{+ } $, which is therefore a full corner in the usual crossed product of system by a group of automorphisms. We use these realizations to identify the ideal of $A\hspace{0.167em} { \mathop{\times }\nolimits}_{\alpha }^{\mathrm{piso} } \hspace{0.167em} {\Gamma }^{+ } $ such that the quotient is the isometric crossed product $A\hspace{0.167em} { \mathop{\times }\nolimits}_{\alpha }^{\mathrm{iso} } \hspace{0.167em} {\Gamma }^{+ } $.
We give a complete characterization of a hypercyclic abelian semigroup of matrices on ℂn. For finitely generated semigroups, this characterization is explicit and it is used to determine the minimal number of matrices in normal form over ℂ that form a hypercyclic abelian semigroup on ℂn. In particular, we show that no abelian semigroup generated by n matrices on ℂn can be hypercyclic.
A semigroup $S$ is called idempotent-surjective (respectively, regular-surjective) if whenever $\rho $ is a congruence on $S$ and $a\rho $ is idempotent (respectively, regular) in $S/ \rho $, then there is $e\in {E}_{S} \cap a\rho $ (respectively, $r\in \mathrm{Reg} (S)\cap a\rho $), where ${E}_{S} $ (respectively, $\mathrm{Reg} (S)$) denotes the set of all idempotents (respectively, regular elements) of $S$. Moreover, a semigroup $S$ is said to be idempotent-regular-surjective if it is both idempotent-surjective and regular-surjective. We show that any regular congruence on an idempotent-regular-surjective (respectively, regular-surjective) semigroup is uniquely determined by its kernel and trace (respectively, the set of equivalence classes containing idempotents). Finally, we prove that all structurally regular semigroups are idempotent-regular-surjective.