Line-driven stellar winds are ubiquitous among hot massive stars. In some cases they can become so strong, that the whole star is cloaked by an optically thick wind. The strong outflow gives rise to large emission lines, defining the class of so-called Wolf-Rayet (WR) stars. While being major players in the evolution of massive stars, the formation of heavy black holes, and the distribution of elements, the occurrence and nature of WR winds is still quite enigmatic.
A promising instrument towards a better theoretical understanding are stellar atmospheres allowing for a consistent inclusion of the hydrodynamics. By coupling stellar and wind parameters and the inclusion of a detailed non-LTE radiative transfer, they allow us to go beneath the observable layers and study the onset of WR-type winds. Establishing larger sets of models, we were able to make ground-breaking progress by identifying trends with mass and metallicity that deviate significantly from present empirical descriptions. Our modelling efforts reveal a complex picture for WR-type winds with strong, non-linear dependencies. Besides covering metallicity and mass, we further identify surface hydrogen as an important ingredient to retain WR-type mass loss at lower metallicity. Here, we present a summary of recent insights on the nature and onset of WR-type winds in massive stars including the consequences for stellar evolution, remaining open questions, and current efforts to overcome them.