Mean dimension is an invariant which makes it possible to distinguish between topological dynamical systems with infinite entropy. Extending in part the work of Lindenstrauss we show that if (X,ℤk) has a free zero-dimensional factor then it can be embedded in the ℤk-shift on ([0,1]d)ℤk, where d=[C(k) mdim(X,ℤk)]+1 for some universal constant C(k), and a topological version of the Rokhlin lemma holds. Furthermore, under the same assumptions, if mdim(X,ℤk)=0, then (X,ℤk) has the small boundary property. One of the applications of this theory is related to Downarowicz’s entropy structure, a master invariant for entropy theory, which captures the emergence of entropy on different scales. Indeed, we generalize this invariant and prove the Boyle–Downarowicz symbolic extension entropy theorem in the setting of ℤk-actions. This theorem describes what entropies are achievable in symbolic extensions.