The formation enthalpies for alkali rare-earth compounds of the type K3RE(PO4)2 where RE = Sc, Y, Lu, Er, Ho, Dy, Gd, Nd, or Ce and for A3Lu(PO4)2 compounds with A = K, Rb, or Cs were determined using high-temperature oxide-melt solution calorimetry. Structural phase transitions were observed and characterized using differential scanning calorimetry and high-temperature x-ray diffraction. The formation enthalpy of the K3RE(PO4)2 phases from oxides becomes more exothermic with increasing rare-earth radius for the K3RE(PO4)2 series and with increasing alkali radius for the A3Lu(PO4)2 compounds. The K3RE(PO4)2 phases are stable with respect to anhydrous K3PO4 and REPO4. The monoclinic K3RE(PO4)2 compounds undergo a reversible phase transition to a hexagonal (glaserite-type) structure with a phase transition temperature that increases from −99 to 1197 °C with increasing RE ionic radius going from Lu to Ce.