1. The problem. The aim of the following considerations is to introduce a new type of non-Aristotelian logic by generalizing the truth-table methods so far employed for establishing non-Aristotelian sentential calculi. We shall expound the intended generalization by applying it to the particular set of pluri-valued systems introduced by J. Łukasiewicz. One will remark that the points of view illustrated by this example may serve to generalize quite analogously any other plurivalued systems, such as those originated by E. L. Post, by H. Reichenbach, and by others.
2. J. Łukasiewicz's plurivalued systems of sentential logic. First of all, we consider briefly the structure of the Łukasiewicz systems themselves.
As to the symbolic notation in which to represent those systems, we make the following agreements: For representing the expressions of the (two- or plurivalued) calculus of sentences, we make use of the Principia mathematica symbolism; however, we employ brackets instead of dots. We call the small italic letters “p”, “q”, “r”, … sentential variables or elementary sentences, and employ the term “sentence” as a general designation of both elementary sentences and the composites made up of elementary sentences and connective symbols (“~”, “ν” “.”, “⊃” “≡”).
Now, the different possible sentences (or, properly speaking, the different possible shapes of sentences, such as “p”, “p∨q”, “~p.(q∨ r)”, etc.) are the objects to which truth-values are ascribed; and just as in every other case one wants a designation for an object in order to be able to speak of it, we want now a system of designations for the sentences with which we are going to deal in our truth-table considerations.