We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Taste is often cited as the factor of greatest significance in food choice, and has been described as the body's ‘nutritional gatekeeper’. Variation in taste receptor genes can give rise to differential perception of sweet, umami and bitter tastes, whereas less is known about the genetics of sour and salty taste. Over twenty-five bitter taste receptor genes exist, of which TAS2R38 is one of the most studied. This gene is broadly tuned to the perception of the bitter-tasting thiourea compounds, which are found in brassica vegetables and other foods with purported health benefits, such as green tea and soya. Variations in this gene contribute to three thiourea taster groups of people: supertasters, medium tasters and nontasters. Differences in taster status have been linked to body weight, alcoholism, preferences for sugar and fat levels in food and fruit and vegetable preferences. However, genetic predispositions to food preferences may be outweighed by environmental influences, and few studies have examined both. The Tastebuddies study aimed at taking a holistic approach, examining both genetic and environmental factors in children and adults. Taster status, age and gender were the most significant influences in food preferences, whereas genotype was less important. Taster perception was associated with BMI in women; nontasters had a higher mean BMI than medium tasters or supertasters. Nutrient intakes were influenced by both phenotype and genotype for the whole group, and in women, the AVI variation of the TAS2R38 gene was associated with a nutrient intake pattern indicative of healthy eating.