Despite the critical role of working memory (WM) in neuropsychiatric conditions, there remains a dearth of available WM-targeted interventions. Gamma and theta oscillations as measured with electroencephalography (EEG) or magnetoencephalography (MEG) reflect the neural underpinnings of WM. The WM processes that fluctuate in conjunction with WM demands are closely correlated with WM test performance, and their EEG signatures are abnormal in several clinical populations. Novel interventions such as transcranial magnetic stimulation (TMS) have been shown to modulate these oscillations and subsequently improve WM performance and clinical symptoms. Systematically identifying pathological WM-related gamma/theta oscillatory patterns with EEG/MEG and developing ways to target them with interventions such as TMS is an active area of clinical research. Results hold promise for enhancing the outcomes of our patients with WM deficits and for moving the field of clinical neuropsychology towards a mechanism-based approach.