We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we give an explicit formula as well as a practical algorithm for computing the Cassels–Tate pairing on $\text{Sel}^{2}(J) \times \text{Sel}^{2}(J)$ where J is the Jacobian variety of a genus two curve under the assumption that all points in J[2] are K-rational. We also give an explicit formula for the Obstruction map $\text{Ob}: H^1(G_K, J[2]) \rightarrow \text{Br}(K)$ under the same assumption. Finally, we include a worked example demonstrating that we can improve the rank bound given by a 2-descent via computing the Cassels–Tate pairing.
This paper contains a method to prove the existence of smooth curves in positive characteristic whose Jacobians have unusual Newton polygons. Using this method, I give a new proof that there exist supersingular curves of genus $4$ in every prime characteristic. More generally, the main result of the paper is that, for every $g \geq 4$ and prime p, every Newton polygon whose p-rank is at least $g-4$ occurs for a smooth curve of genus g in characteristic p. In addition, this method resolves some cases of Oort’s conjecture about Newton polygons of curves.
We show that, for any prime p, there exist absolutely simple abelian varieties over $\mathbb {Q}$ with arbitrarily large p-torsion in their Tate-Shafarevich groups. To prove this, we construct explicit $\mu _p$-covers of Jacobians of curves of the form $y^p = x(x-1)(x-a)$ which violate the Hasse principle. In the appendix, Tom Fisher explains how to interpret our proof in terms of a Cassels-Tate pairing.
Let A be an abelian surface over ${\mathbb {Q}}$ whose geometric endomorphism ring is a maximal order in a non-split quaternion algebra. Inspired by Mazur’s theorem for elliptic curves, we show that the torsion subgroup of $A({\mathbb {Q}})$ is $12$-torsion and has order at most $18$. Under the additional assumption that A is of $ {\mathrm{GL}}_2$-type, we give a complete classification of the possible torsion subgroups of $A({\mathbb {Q}})$.
Cardona and Lario [‘Twists of the genus 2 curve $y^2 = x^6+1$’, J. Number Theory209 (2020), 195–211] gave a complete classification of the twists of the curve $y^2 = x^6+1$. In this paper, we study the twists of the curve whose automorphism group is defined over a biquadratic extension of the rationals. If the twists are of type B or C in the Cardona–Lario classification, we find a pair of elliptic curves whose product is isogenous with the Jacobian of the twist.
This paper is the first part in a series of three papers devoted to the study of enumerative invariants of abelian surfaces through the tropical approach. In this paper, we consider the enumeration of genus g curves of fixed degree passing through g points. We compute the tropical multiplicity provided by a correspondence theorem due to T. Nishinou and show that it is possible to refine this multiplicity in the style of the Block–Göttsche refined multiplicity to get tropical refined invariants.
We study for each fixed integer $g \ge 2$, for all primes $\ell $ and p with $\ell \neq p$, finite regular directed graphs associated with the set of equivalence classes of $\ell $-marked principally polarized superspecial abelian varieties of dimension g in characteristic p, and show that the adjacency matrices have real eigenvalues with spectral gaps independent of p. This implies a rapid mixing property of natural random walks on the family of isogeny graphs beyond the elliptic curve case and suggests a potential construction of the Charles–Goren–Lauter-type cryptographic hash functions for abelian varieties. We give explicit lower bounds for the gaps in terms of the Kazhdan constant for the symplectic group when $g \ge 2$. As a byproduct, we also show that the finite regular directed graphs constructed by Jordan and Zaytman also has the same property.
Let G be a semiabelian variety defined over an algebraically closed field K of prime characteristic. We describe the intersection of a subvariety X of G with a finitely generated subgroup of $G(K)$.
The classical Mordell–Weil theorem implies that an abelian variety A over a number field K has only finitely many K-rational torsion points. This finitude of torsion still holds even over the cyclotomic extension $K^{\mathrm {cyc}}=K{\mathbb Q}^{\mathrm {ab}}$ by a result of Ribet. In this article, we consider the finiteness of torsion points of an abelian variety A over the infinite algebraic extension $K_B$ obtained by adjoining the coordinates of all torsion points of an abelian variety B. Assuming the Mumford–Tate conjecture, and up to a finite extension of the base field K, we give a necessary and sufficient condition for the finiteness of $A(K_B)_{\mathrm tors}$ in terms of Mumford–Tate groups. We give a complete answer when both abelian varieties have dimension at most 3, or when both have complex multiplication.
For each prime p, we show that there exist geometrically simple abelian varieties A over
${\mathbb Q}$
with . Specifically, for any prime
$N\equiv 1 \ \pmod p$
, let
$A_f$
be an optimal quotient of
$J_0(N)$
with a rational point P of order p, and let
$B = A_f/\langle P \rangle $
. Then the number of positive integers
$d \leq X$
with is
$ \gg X/\log X$
, where
$\widehat B_d$
is the dual of the dth quadratic twist of B. We prove this more generally for abelian varieties of
$\operatorname {\mathrm {GL}}_2$
-type with a p-isogeny satisfying a mild technical condition. In the special case of elliptic curves, we give stronger results, including many examples where for an explicit positive proportion of integers d.
We prove new results on the distribution of rational points on ramified covers of abelian varieties over finitely generated fields $k$ of characteristic zero. For example, given a ramified cover $\pi : X \to A$, where $A$ is an abelian variety over $k$ with a dense set of $k$-rational points, we prove that there is a finite-index coset $C \subset A(k)$ such that $\pi (X(k))$ is disjoint from $C$. Our results do not seem to be in the range of other methods available at present; they confirm predictions coming from Lang's conjectures on rational points, and also go in the direction of an issue raised by Serre regarding possible applications to the inverse Galois problem. Finally, the conclusions of our work may be seen as a sharp version of Hilbert's irreducibility theorem for abelian varieties.
We study the Betti map of a particular (but relevant) section of the family of Jacobians of hyperelliptic curves using the polynomial Pell equation
$A^2-DB^2=1$
, with
$A,B,D\in \mathbb {C}[t]$
and certain ramified covers
$\mathbb {P}^1\to \mathbb {P}^1$
arising from such equation and having heavy constrains on their ramification. In particular, we obtain a special case of a result of André, Corvaja and Zannier on the submersivity of the Betti map by studying the locus of the polynomials D that fit in a Pell equation inside the space of polynomials of fixed even degree. Moreover, Riemann existence theorem associates to the abovementioned covers certain permutation representations: We are able to characterize the representations corresponding to ‘primitive’ solutions of the Pell equation or to powers of solutions of lower degree and give a combinatorial description of these representations when D has degree 4. In turn, this characterization gives back some precise information about the rational values of the Betti map.
Let $p$ be a prime number. Kęstutis Česnavičius proved that for an abelian variety $A$ over a global field $K$, the $p$-Selmer group $\mathrm {Sel}_{p}(A/L)$ grows unboundedly when $L$ ranges over the $(\mathbb {Z}/p\mathbb {Z})$-extensions of $K$. Moreover, he raised a further problem: is $\dim _{\mathbb {F}_{p}} \text{III} (A/L) [p]$ also unbounded under the above conditions? In this paper, we give a positive answer to this problem in the case $p \neq \mathrm {char}\,K$. As an application, this result enables us to generalize the work of Clark, Sharif and Creutz on the growth of potential $\text{III}$ in cyclic extensions. We also answer a problem proposed by Lim and Murty concerning the growth of the fine Tate–Shafarevich groups.
Given a K3 surface X over a number field K with potentially good reduction everywhere, we prove that the set of primes of K where the geometric Picard rank jumps is infinite. As a corollary, we prove that either
$X_{\overline {K}}$
has infinitely many rational curves or X has infinitely many unirational specialisations.
Our result on Picard ranks is a special case of more general results on exceptional classes for K3 type motives associated to GSpin Shimura varieties. These general results have several other applications. For instance, we prove that an abelian surface over a number field K with potentially good reduction everywhere is isogenous to a product of elliptic curves modulo infinitely many primes of K.
We formulate a strengthening of the Zariski dense orbit conjecture for birational maps of dynamical degree one. So, given a quasiprojective variety X defined over an algebraically closed field K of characteristic
$0$
, endowed with a birational self-map
$\phi $
of dynamical degree
$1$
, we expect that either there exists a nonconstant rational function
$f:X\dashrightarrow \mathbb {P} ^1$
such that
$f\circ \phi =f$
, or there exists a proper subvariety
$Y\subset X$
with the property that, for any invariant proper subvariety
$Z\subset X$
, we have that
$Z\subseteq Y$
. We prove our conjecture for automorphisms
$\phi $
of dynamical degree
$1$
of semiabelian varieties X. Moreover, we prove a related result for regular dominant self-maps
$\phi $
of semiabelian varieties X: assuming that
$\phi $
does not preserve a nonconstant rational function, we have that the dynamical degree of
$\phi $
is larger than
$1$
if and only if the union of all
$\phi $
-invariant proper subvarieties of X is Zariski dense. We give applications of our results to representation-theoretic questions about twisted homogeneous coordinate rings associated with abelian varieties.
Let $p$ be a rational prime, let $F$ denote a finite, unramified extension of ${{\mathbb {Q}}}_p$, let $K$ be the maximal unramified extension of ${{\mathbb {Q}}}_p$, ${{\overline {K}}}$ some fixed algebraic closure of $K$, and ${{\mathbb {C}}}_p$ be the completion of ${{\overline {K}}}$. Let $G_F$ be the absolute Galois group of $F$. Let $A$ be an abelian variety defined over $F$, with good reduction. Classically, the Fontaine integral was seen as a Hodge–Tate comparison morphism, i.e. as a map $\varphi _{A} \otimes 1_{{{\mathbb {C}}}_p}\colon T_p(A)\otimes _{{{\mathbb {Z}}}_p}{{\mathbb {C}}}_p\to \operatorname {Lie}(A)(F)\otimes _F{{\mathbb {C}}}_p(1)$, and as such it is surjective and has a large kernel. This paper starts with the observation that if we do not tensor $T_p(A)$ with ${{\mathbb {C}}}_p$, then the Fontaine integral is often injective. In particular, it is proved that if $T_p(A)^{G_K} = 0$, then $\varphi _A$ is injective. As an application, we extend the Fontaine integral to a perfectoid like universal cover of $A$ and show that if $T_p(A)^{G_K} = 0$, then $A(\overline {K})$ has a type of $p$-adic uniformization, which resembles the classical complex uniformization.
We study the p-rank stratification of the moduli space of cyclic degree
$\ell $
covers of the projective line in characteristic p for distinct primes p and
$\ell $
. The main result is about the intersection of the p-rank
$0$
stratum with the boundary of the moduli space of curves. When
$\ell =3$
and
$p \equiv 2 \bmod 3$
is an odd prime, we prove that there exists a smooth trielliptic curve in characteristic p, for every genus g, signature type
$(r,s)$
, and p-rank f satisfying the clear necessary conditions.
Let $A$ be a non-isotrivial ordinary abelian surface over a global function field of characteristic $p>0$ with good reduction everywhere. Suppose that $A$ does not have real multiplication by any real quadratic field with discriminant a multiple of $p$. We prove that there are infinitely many places modulo which $A$ is isogenous to the product of two elliptic curves.
Let $X/\mathbb {F}_{q}$ be a smooth, geometrically connected, quasi-projective scheme. Let $\mathcal {E}$ be a semi-simple overconvergent $F$-isocrystal on $X$. Suppose that irreducible summands $\mathcal {E}_i$ of $\mathcal {E}$ have rank 2, determinant $\bar {\mathbb {Q}}_p(-1)$, and infinite monodromy at $\infty$. Suppose further that for each closed point $x$ of $X$, the characteristic polynomial of $\mathcal {E}$ at $x$ is in $\mathbb {Q}[t]\subset \mathbb {Q}_p[t]$. Then there exists a dense open subset $U\subset X$ such that $\mathcal {E}|_U$ comes from a family of abelian varieties on $U$. As an application, let $L_1$ be an irreducible lisse $\bar {\mathbb {Q}}_l$ sheaf on $X$ that has rank 2, determinant $\bar {\mathbb {Q}}_l(-1)$, and infinite monodromy at $\infty$. Then all crystalline companions to $L_1$ exist (as predicted by Deligne's crystalline companions conjecture) if and only if there exist a dense open subset $U\subset X$ and an abelian scheme $\pi _U\colon A_U\rightarrow U$ such that $L_1|_U$ is a summand of $R^{1}(\pi _U)_*\bar {\mathbb {Q}}_l$.