We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$ be an $n$-dimensional (smooth) intersection of two quadrics, and let ${T^{\rm{*}}}X$ be its cotangent bundle. We show that the algebra of symmetric tensors on $X$ is a polynomial algebra in $n$ variables. The corresponding map ${\rm{\Phi }}:{T^{\rm{*}}}X \to {\mathbb{C}^n}$ is a Lagrangian fibration, which admits an explicit geometric description; its general fiber is a Zariski open subset of an abelian variety, which is a quotient of a hyperelliptic Jacobian by a $2$-torsion subgroup. In dimension $3$, ${\rm{\Phi }}$ is the Hitchin fibration of the moduli space of rank $2$ bundles with fixed determinant on a curve of genus $2$.
We prove several boundedness statements for geometrically integral normal del Pezzo surfaces X over arbitrary fields. We give an explicit sharp bound on the irregularity if X is canonical or regular. In particular, we show that wild canonical del Pezzo surfaces exist only in characteristic $2$. As an application, we deduce that canonical del Pezzo surfaces form a bounded family over $\mathbb {Z}$, generalising work of Tanaka. More generally, we prove the BAB conjecture on the boundedness of $\varepsilon $-klt del Pezzo surfaces over arbitrary fields of characteristic different from $2, 3$ and $5$.
Inspired by K. Fujita's algebro-geometric result that complex projective space has maximal degree among all K-semistable complex Fano varieties, we conjecture that the height of a K-semistable metrized arithmetic Fano variety $\mathcal {X}$ of relative dimension $n$ is maximal when $\mathcal {X}$ is the projective space over the integers, endowed with the Fubini–Study metric. Our main result establishes the conjecture for the canonical integral model of a toric Fano variety when $n\leq 6$ (the extension to higher dimensions is conditioned on a conjectural ‘gap hypothesis’ for the degree). Translated into toric Kähler geometry, this result yields a sharp lower bound on a toric invariant introduced by Donaldson, defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate our conjecture as an optimal lower bound on Odaka's modular height. In any dimension $n$ it is shown how to control the height of the canonical toric model $\mathcal {X},$ with respect to the Kähler–Einstein metric, by the degree of $\mathcal {X}$. In a sequel to this paper our height conjecture is established for any projective diagonal Fano hypersurface, by exploiting a more general logarithmic setup.
Sextic double solids, double covers of $\mathbb P^3$ branched along a sextic surface, are the lowest degree Gorenstein terminal Fano 3-folds, hence are expected to behave very rigidly in terms of birational geometry. Smooth sextic double solids, and those which are $\mathbb Q$-factorial with ordinary double points, are known to be birationally rigid. In this paper, we study sextic double solids with an isolated compound $A_n$ singularity. We prove a sharp bound $n \leq 8$, describe models for each n explicitly, and prove that sextic double solids with $n> 3$ are birationally nonrigid.
The $4 n^2$-inequality for smooth points plays an important role in the proofs of birational (super)rigidity. The main aim of this paper is to generalize such an inequality to terminal singular points of type $cA_1$, and obtain a $2 n^2$-inequality for $cA_1$ points. As applications, we prove birational (super)rigidity of sextic double solids, many other prime Fano 3-fold weighted complete intersections, and del Pezzo fibrations of degree $1$ over $\mathbb {P}^1$ satisfying the $K^2$-condition, all of which have at most terminal $cA_1$ singularities and terminal quotient singularities. These give first examples of birationally (super)rigid Fano 3-folds and del Pezzo fibrations admitting a $cA_1$ point which is not an ordinary double point.
We prove that all smooth Fano threefolds in the families and are K-stable, and we also prove that smooth Fano threefolds in the family that satisfy one very explicit generality condition are K-stable.
For a real number $0<\epsilon <1/3$, we show that the anti-canonical volume of an $\epsilon $-klt Fano $3$-fold is at most $3,200/\epsilon ^4$, and the order $O(1/\epsilon ^4)$ is sharp.
We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index $1$ is greater than or equal to $1/2$. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurfaces of index $1$.
We give conditions for a uniruled variety of dimension at least 2 to be nonsolid. This study provides further evidence to a conjecture by Abban and Okada on the solidity of Fano 3-folds. To complement our results we write explicit birational links from Fano 3-folds of high codimension embedded in weighted projective spaces.
Let $X$ be a smooth projective variety defined over an algebraically closed field of positive characteristic $p$ whose tangent bundle is nef. We prove that $X$ admits a smooth morphism $X \to M$ such that the fibers are Fano varieties with nef tangent bundle and $T_M$ is numerically flat. We also prove that extremal contractions exist as smooth morphisms. As an application, we prove that, if the Frobenius morphism can be lifted modulo $p^2$, then $X$ admits, up to a finite étale Galois cover, a smooth morphism onto an ordinary abelian variety whose fibers are products of projective spaces.
This papers classifies toric Fano threefolds with singular locus $\{ \frac {1}{k}(1,1,1) \}$ for $k \in \mathbb {Z}_{\geq 1}$ building on the work of Batyrev (1981, Nauk SSSR Ser. Mat. 45, 704–717) and Watanabe–Watanabe (1982, Tokyo J. Math. 5, 37–48). This is achieved by completing an equivalent problem in the language of Fano polytopes. Furthermore, we identify birational relationships between entries of the classification. For a fixed value $k \geq 4$, there are exactly two such toric Fano threefolds linked by a blowup in a torus-invariant line.
We prove an algebraic version of the Hamilton–Tian conjecture for all log Fano pairs. More precisely, we show that any log Fano pair admits a canonical two-step degeneration to a reduced uniformly Ding stable triple, which admits a Kähler–Ricci soliton when the ground field .
We propose a conjectural semiorthogonal decomposition for the derived category of the moduli space of stable rank 2 bundles with fixed determinant of odd degree, independently formulated by Narasimhan. We discuss some evidence for and furthermore propose semiorthogonal decompositions with additional structure.
We also discuss two other decompositions. One is a decomposition of this moduli space in the Grothendieck ring of varieties, which relates to various known motivic decompositions. The other is the critical value decomposition of a candidate mirror Landau–Ginzburg model given by graph potentials, which in turn is related under mirror symmetry to Muñoz’s decomposition of quantum cohomology. This corresponds to an orthogonal decomposition of the Fukaya category. We discuss how decompositions on different levels (derived category of coherent sheaves, Grothendieck ring of varieties, Fukaya category, quantum cohomology, critical sets of graph potentials) are related and support each other.
We show that the only finite quasi-simple non-abelian groups that can faithfully act on rationally connected threefolds are the following groups:
${\mathfrak{A}}_5$
,
${\text{PSL}}_2(\textbf{F}_7)$
,
${\mathfrak{A}}_6$
,
${\text{SL}}_2(\textbf{F}_8)$
,
${\mathfrak{A}}_7$
,
${\text{PSp}}_4(\textbf{F}_3)$
,
${\text{SL}}_2(\textbf{F}_{7})$
,
$2.{\mathfrak{A}}_5$
,
$2.{\mathfrak{A}}_6$
,
$3.{\mathfrak{A}}_6$
or
$6.{\mathfrak{A}}_6$
. All of these groups with a possible exception of
$2.{\mathfrak{A}}_6$
and
$6.{\mathfrak{A}}_6$
indeed act on some rationally connected threefolds.
We prove rationality criteria over nonclosed fields of characteristic $0$ for five out of six types of geometrically rational Fano threefolds of Picard number $1$ and geometric Picard number bigger than $1$. For the last type of such threefolds, we provide a unirationality criterion and construct examples of unirational but not stably rational varieties of this type.
We propose a conjectural list of Fano manifolds of Picard number $1$ with pseudoeffective normalised tangent bundles, which we prove in various situations by relating it to the complete divisibility conjecture of Francesco Russo and Fyodor L. Zak on varieties with small codegree. Furthermore, the pseudoeffective thresholds and, hence, the pseudoeffective cones of the projectivised tangent bundles of rational homogeneous spaces of Picard number $1$ are explicitly determined by studying the total dual variety of minimal rational tangents (VMRTs) and the geometry of stratified Mukai flops. As a by-product, we obtain sharp vanishing theorems on the global twisted symmetric holomorphic vector fields on rational homogeneous spaces of Picard number $1$.
We develop a general approach to prove K-stability of Fano varieties. The new theory is used to (a) prove the existence of Kähler-Einstein metrics on all smooth Fano hypersurfaces of Fano index two, (b) compute the stability thresholds for hypersurfaces at generalised Eckardt points and for cubic surfaces at all points, and (c) provide a new algebraic proof of Tian’s criterion for K-stability, amongst other applications.