We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
3D printed orthomode transducer (OMT) integrated with a 3D printed lens antenna is presented in this work. The OMT integrated with the lens antenna covers the range of 54–80 GHz, the radiator can handle a fractional bandwidth of 38%. Fused filament fabrication printing process is used for the domed elliptical profile lens antenna and polyjet printing process is used for fabrication of the OMT. The simulated radiation efficiency of the antenna remains above 90% for the entire bandwidth and the structure shows a gain of above 16 dBi.
BioForms integrates sacrificial formworks, agent-based computational algorithms and biological growth in the generation of biodegradable internal wall panel systems. These wall panel systems are intended to minimize material waste, utilize local botany and generate a symbiosis between the artificially made and the naturally grown. This is achieved by utilizing local waste as a structural compressive core, mycelium as the binder, and recycled pellets as the architectural skin. Leveraging mycelium’s structural, acoustic and thermal properties, this exploration delves into unique methods of incorporating fungi and waste into architectural construction. The motivations for this research stem from the need to address the building industry’s contribution to climate change, by considering the lifecycle of our materials. BioForms aims to retrofit existing buildings by replacing foam insulation and MDF (medium-density fiberboard) wall panels with biodegradable and recyclable 3D-printed skins embedded with a mycelium core. Analysing mycelium’s reaction to BioForms I, the second iteration, BioForms II, evolves in design complexity and materiality. BioForms II explored robotically fabricated wood-based polylactic acid plastic (PLA) composite materials. Within the second iteration of this research stream, mycelia was both embedded within the compressed fabricated skins and on the external surface. Whilst BioForms explored the generation of biodegradable wall panel systems, the broader aims of this research is aimed at infiltrating biological matter into human-occupied spaces, completely omitting the use of synthetic building materials within the construction industry and advancing the architects relationship to nature in the generation of form.
The additive manufacturing of parts made from close-to-production materials poses a great challenge. One example are highly viscous silicones, as used in injection moulding. For small production quantities, the manufacturing of injection moulds is uneconomical. This paper presents tensile specimens printed with an in-house developed dispensing system, which are analysed for air cavities (micro-CT scans) and mechanical properties. Based on the results, advice for the design and slicing parameters of parts using high-viscosity silicones in AM by means of material extrusion are developed.
The growing use of additive manufacturing (AM) processes pushes research towards studying methods to reduce their environmental impact. The part build orientation is a significant process variable, which can be chosen through the Energy Performance Assessment (EPA), a straightforward method. The paper presents a method for identifying the best part build orientation considering energy consumption. The EPA has been adapted for this purpose, resulting in an approach based on four steps. The method was employed to determine the best printing direction for three parts and two AM technologies.
In the field of individualized medical implants for bone replacesment, additive manufacturing offers far-reaching advantages for bridging bone defects and supporting the production of natural form and function. The article uses the example of a large, customized cranial implant to show the challenges of manufacturing with osteoinductive bone cements. The process is shown, starting with planning and design, through to functional integration using adapted manufacturing strategies to create defined porosity.
The use of material extrusion (MEX) has increased rapidly due to the affordability of 3D printers. This has led to a growing demand for improved print quality, high fidelity, strength, or fast print times. In this study, a non-planar approach for better surface quality is investigated. The hardware of a 3-axis MEX printer was developed together with testing new software for non-planar slicing. The aim was to identify the most influential parameter combinations using design of experiments. A novel method for measuring surface quality was presented together with future research work.
In Fused Filament Fabrication, there is increasing interest in the potential of composite filaments for producing complex and load-bearing components. Carbon fibre-filled polyamide currently has highest available strength and stiffness, but promising variants are not in filament form. This paper investigates filament production of commercially available, high-filled PA-CF pellets by modifying a tabletop filament extruder. We show filament production is possible by improving cooling. The FFF printed specimens show an average UTS of 135.5 MPa, higher than most commercially available filaments.
The production of reusable gecko-inspired dry adhesives has traditionally been done with complex nanofabrication methods such as lithography and PDMS casting. This article presents a way of producing and testing dry adhesive samples using consumer-grade AM machines and equipment typically available in a Makerspace. The samples produced exhibit adhesive properties depending on the preload and surface structure, and we conclude that consumer-grade AM is suitable for rapid prototyping and testing of dry adhesion. However, it is limited by the scale and accuracy compared to traditional methods.
This paper examines how students' ideas evolve into physical prototypes within a digital fabrication design course. Examining the materials used, customization approaches, iterations, and team dynamics of 26 student projects reveals interplays between ideas, available tools, materials and constraints. Findings show the predominance of techniques, design preferences, concept refinement, and teamwork challenges. The implications highlight the value of hands-on iteration for alignment with reality and the need to support collaboration skills alongside technical prototype development.
In 3D printing, calibration is crucial for accurate prints, particularly those with complex or intricate features. This paper focuses on developing, manufacturing, and testing a benchmarking model to assess the dimensional accuracy of 3D printers. The aim is to evaluate the 3D printed model against a universally recognized real-world equivalent – a LEGO® brick – using its interlock function as a test with an engaging element. An interlock benchmarking framework aids further analysis of the model's performance, and a checklist for the model is provided for additional visual analysis.
This research aimed to print realistically detailed and magnified three-dimensional models of the inner ear, specifically focusing on visualising its complex labyrinth structure and functioning simulation.
Methods
Temporal bone computed-tomography data were imported into Mimics software to construct an initial three-dimensional inner-ear model. Subsequently, the model was amplified and printed with precision using a three-dimensional printer. Five senior attending physicians evaluated the printed model using a Likert scale to gauge its morphological accuracy, clinical applicability and anatomical teaching value.
Results
The printed inner-ear model effectively demonstrated the intricate internal structure. All five physicians agreed that the model closely resembled the real inner ear in shape and structure, and simulated certain inner-ear functions. The model was considered highly valuable for understanding anatomical structure and disorders.
Conclusion
The three-dimensionally printed inner-ear model is highly simulated and provides a valuable visual tool for studying inner-ear anatomy and clinical teaching, benefiting otologists.
3D printing technologies, such as material extrusion (MEX), hold the potential to revolutionise manufacturing by providing individuals without traditional manufacturing capabilities with powerful and affordable resources. However, widespread adoption is impeded by the lack of user-friendly design tools due to the necessity of domain-specific expertise in computer-aided design (CAD) software and the overwhelming level of design freedom afforded by the MEX process. To overcome these barriers and facilitate the democratisation of design (DoD), this article introduces an innovative, generative-based design (GBD) methodology aimed at enabling non-technical users to create functional components independently. The novelty of this methodology lies in its capacity to simplify complex design tasks, making them more accessible to non-designers. The proposed methodology was tested in the design of a load-bearing part, yielding a functional component within two design iterations. A comparative analysis with the conventional CAD-based process revealed that the GBD methodology enables the DoD, reflected in a 68% reduction in design activities and a decrease in design difficulty of 62% in requisite know-how and a 55% in understanding. Through the creation and implementation of this methodology, the article demonstrates a pioneering integration of state-of-the-art techniques of generative design with design repositories enabling effective co-design with non-designers.
Product prototypes and particularly those that are 3D printed will have mass properties that are significantly different from the product they represent. This affects both functional performance and stakeholder perception of the prototype. Within this work, computational emulation of mass properties for a primitive object (a cube) is considered, developing a baseline numerical method and parameter set with the aim of demonstrating the means of improving feel in 3D printed prototypes. The method is then applied and tuned for three case study products – a games controller, a hand drill and a laser pointer – demonstrating that product mass properties could be numerically emulated to within ~1% of the target values. This was achieved using typical material extrusion technology with no physical or process modification. It was observed that emulation accuracy is dependent on the relative offset of the centre of mass from the geometric centre. A sensitivity analysis is further undertaken to demonstrate that product-specific parameters can be beneficial. With tuning of these values, and with some neglect of practical limitations, emulation accuracy as high as ~99.8% can be achieved. This was shown to be a reduction in error of up to 99.6% relative to a conventional fabrication.
3D printing is a widely used technology for automating the fabrication of prototypes. The benefits are wide reaching, and include low required expertise, accurate geometric form and the processibility of many materials. However, production of certain forms – especially large forms – can be slow. From review of the sub-systems, the hotend is commonly found to be the limiting factor. To improve this, a modified nozzle design is considered that incorporates a flat copper plate within the flow stream. Analytical simulation was used to guide this design before experimental methods validated the modifications. The maximum volumetric rate for the standard hotend nozzle is 14 mm3/s. The best performing modified nozzle increased the maximum volumetric flow rate to 26 mm3/s – an 86% increase. A series of popular parts were further considered, demonstrating a maximum ∼48% fabrication time reduction, and a mean of ∼23%. This enables 3D printed prototypes to be made more efficiently – both with regards to the design cycle and energy use – and allows designers to use the technology more rapidly than previously possible. By extension, this improves the efficiency of the design process.
Home hand rehabilitation for stroke is becoming increasingly important due to logistic and financial challenges. Developing Daily-life Integrated Hand-rehabilitation Products (DIHP) aims to enable the application of at-home rehabilitation. The materials of these products are essential for their success, however, selecting materials for DIHP has not been investigated yet. Previous research on material selection showed that it is done strictly on material properties or based on a human-centered approach. Hence, in this study, we propose a hybrid model for choosing materials for DIHP. To achieve this, we first combined the findings of previous material selection processes into a comprehensive material selection model. We applied this model in a case study, in which we first selected three materials based on their properties. Following, we 3d printed a DIHP out of the chosen materials and tested the feeling of the materials with multiple expert groups. Our findings suggest that the proposed material selection method is promising and highlights that our comprehensive model provides more insights when compared to a strict material property-based selection.
Selecting a suitable file format for data exchange in additive manufacturing is fundamental when designing these digital process chains. Within the scope of this investigation, alternatives to the de-facto industry standard STL are to be found to overcome the disadvantages of the STL-based digital process chain.
Therefore, suitable file formats are identified by conducting literature and market research and evaluated regarding their suitability to support a continuous digital process chain. In addition, typical use cases in additive manufacturing are defined, and their requirements for a file format for data exchange are derived. Finally, for each use case defined, recommended and suitable file formats are proposed.
The as-built geometry and material properties of parts manufactured using Additive Manufacturing (AM) can differ significantly from the as-designed model and base material properties. These differences can be more pronounced in thin strut-like features (e.g., in a lattice structure), making it essential to incorporate them when designing for AM and predicting their structural behaviour. Therefore, the aim of this study is to develop a numerical model with realistic characteristics based on a thin strut-based test artefact and to use it accurately for estimating its compressive strength. Experiments on test samples produced by selective laser sintering in PA 1101, are used to calculate geometrical deviations, Young's modulus, and yield strength, which are used to calibrate the numerical model. The experimental and numerical results show that the numerical model incorporating geometrical and material deviations can accurately predict the peak load and the force-displacement behaviour. The main contributions of this paper include the design of the test artefact, the average geometrical deviation of the struts, the measured material data, and the developed numerical model.
Tuned mass dampers may be used to improve vibrational behavior of structures. However, they require space to move. This paper presents an approach to incorporate tuned mass dampers into a lightweight-optimized structure without extra space requirement. It is based on (1) topology optimization (TopOpt) with unit cells and (2) vibration reduction with multiple tuned mass dampers (m-TMD) within the unit cells. The topology optimization is performed with a physics-informed penalty factor, unique to the chosen unit cell. Subsequently, the weight optimal density distribution is realized by populating the design domain with unit cells of ten different densities. To reduce the induced vibration, m-TMDs are placed inside the cavities of the unit cells in the grey scale regions. The effectiveness of the approach is demonstrated for the design of a 2-segment robot arm. The resulting unit cell robotic arm (UC-Arm) is 3.6% lighter than the reference model, maintains the same static performance, and shows a 60% smaller dynamic displacement in the observed frequency range. No extra space is required for the motion of the m-TMD.
In this paper, a case study of a redesign process for 3D-printed parts has been analysed. The purpose was to compare the implementation of specialist knowledge in hands-on engineering tasks with the previous experience-based approach. Here, specialist knowledge refers to systematic experimental work as a basis for Computer Aided Engineering (CAE). The case involves a set of compliant arms for an oil extraction device developed by a start-up company. Tensile tests of 3D printed dog-bone were performed to characterise the Young's modulus, tensile strength, and orthotropic behaviour of the material to build a material model based on Finite Element Analysis (FEA). With the material characteristics and three simple tests to estimate the optimisation constraints, the existing solution was disproven. Then, new solution candidates were generated and evaluated with input from the start-up company. The process resulted in a feasible solution as well as a reduction of maximum stress from 54MPa to 20MPa. The case highlights the value of specialist knowledge for characterisation of new technologies and design space constraints to reduce and improve iterations to solve a practical design problem.
3D printing is widely touted as a game changer in medicine and surgery, paving the way for point-of-care production of personalised medical devices. Nonetheless, to date, most reported applications of 3D printing in healthcare are restricted to specific scenarios in a few surgical disciplines, and little research exists on how 3D printing can be deployed more systematically beyond pioneer surgical departments. To understand the potential for 3D printing at a hospital level, we report the results of an interview study in a French general hospital. We analyse the current use of 3D printing and estimate the potential for new applications. We explore what share of these applications could be internalised, and what would be the organisational implications and the key success factors for an internal 3D printing unit. We find a large untapped potential for internal production of 3D printed products, spanning a much broader range of applications and hospital departments than what currently exists in the hospital. We then discuss important criteria to develop in-house 3D printing.