We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We obtain a new upper bound for Neumann eigenvalues of the Laplacian on a bounded convex domain in Euclidean space. As an application of the upper bound, we derive universal inequalities for Neumann eigenvalues of the Laplacian.
In this paper we study the small-scale equidistribution property of random waves whose coefficients are determined by an unfair coin. That is, the coefficients take value
$+1$
with probability p and
$-1$
with probability
$1-p$
. Random waves whose coefficients are associated with a fair coin are known to equidistribute down to the wavelength scale. We obtain explicit requirements on the deviation from the fair (
$p=0.5$
) coin to retain equidistribution.
A Birkhoff billiard is a system describing the inertial motion of a point mass inside a strictly convex planar domain, with elastic reflections at the boundary. The study of the associated dynamics is profoundly intertwined with the geometric properties of the domain: while it is evident how the shape determines the dynamics, a more subtle and difficult question is the extent to which the knowledge of the dynamics allows one to reconstruct the shape of the domain. This translates into many intriguing inverse problems and unanswered rigidity questions, which have been the focus of very active research in recent decades. In this paper we describe some of these questions, along with their connection to other problems in analysis and geometry, with particular emphasis on recent results obtained by the authors and their collaborators.
By means of a counter-example, we show that the Reilly theorem for the upper bound of the first non-trivial eigenvalue of the Laplace operator of a compact submanifold of Euclidean space (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) does not work for a (codimension ⩾2) compact spacelike submanifold of Lorentz–Minkowski spacetime. In the search of an alternative result, it should be noted that the original technique in (Reilly, 1977, Comment. Mat. Helvetici, 52, 525–533) is not applicable for a compact spacelike submanifold of Lorentz–Minkowski spacetime. In this paper, a new technique, based on an integral formula on a compact spacelike section of the light cone in Lorentz–Minkowski spacetime is developed. The technique is genuine in our setting, that is, it cannot be extended to another semi-Euclidean spaces of higher index. As a consequence, a family of upper bounds for the first eigenvalue of the Laplace operator of a compact spacelike submanifold of Lorentz–Minkowski spacetime is obtained. The equality for one of these inequalities is geometrically characterized. Indeed, the eigenvalue achieves one of these upper bounds if and only if the compact spacelike submanifold lies minimally in a hypersphere of certain spacelike hyperplane. On the way, the Reilly original result is reproved if a compact submanifold of a Euclidean space is naturally seen as a compact spacelike submanifold of Lorentz–Minkowski spacetime through a spacelike hyperplane.
We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide simple counterexamples in the case of cylindrical Riemannian manifolds with boundary having two ends. The coefficients of these metrics are smooth in the interior of the manifold and are only Hölder continuous of order $\unicode[STIX]{x1D70C}<1$ at the end where the measurements are made. More precisely, we construct a toroidal ring $(M,g)$ and we show that there exist in the conformal class of $g$ an infinite number of Riemannian metrics $\tilde{g}=c^{4}g$ such that their corresponding partial Dirichlet-to-Neumann maps at one end coincide. The corresponding smooth conformal factors are harmonic with respect to the metric $g$ and do not satisfy the unique continuation principle.
In this paper we study spectral properties of the Dirichlet-to-Neumann map on differential forms obtained by a slight modification of the definition due to Belishev and Sharafutdinov. The resulting operator $\unicode[STIX]{x039B}$ is shown to be self-adjoint on the subspace of coclosed forms and to have purely discrete spectrum there. We investigate properties of eigenvalues of $\unicode[STIX]{x039B}$ and prove a Hersch–Payne–Schiffer type inequality relating products of those eigenvalues to eigenvalues of the Hodge Laplacian on the boundary. Moreover, non-trivial eigenvalues of $\unicode[STIX]{x039B}$ are always at least as large as eigenvalues of the Dirichlet-to-Neumann map defined by Raulot and Savo. Finally, we remark that a particular case of $p$-forms on the boundary of a $2p+2$-dimensional manifold shares many important properties with the classical Steklov eigenvalue problem on surfaces.
We prove the existence of a discrete correlation spectrum for Morse–Smale flows acting on smooth forms on a compact manifold. This is done by constructing spaces of currents with anisotropic Sobolev regularity on which the Lie derivative has a discrete spectrum.
Subconvexity bounds on the critical line are proved for general Epstein zeta-functions of $k$-ary quadratic forms. This is related to sup-norm bounds for unitary Eisenstein series on $\text{GL}(k)$ associated with the maximal parabolic of type $(k-1,1)$, and the exact sup-norm exponent is determined to be $(k-2)/8$ for $k\geqslant 4$. In particular, if $k$ is odd, this exponent is not in $\frac{1}{4}\mathbb{Z}$, which is relevant in the context of Sarnak’s purity conjecture and shows that it can in general not directly be generalized to Eisenstein series.
This paper is devoted to dimensional reductions via the norm-resolvent convergence. We derive explicit bounds on the resolvent difference as well as spectral asymptotics. The efficiency of our abstract tool is demonstrated by its application on seemingly different partial differential equation problems from various areas of mathematical physics; all are analysed in a unified manner, known results are recovered and new ones established.
The normalized eigenvalues ${{\Lambda }_{i}}\left( M,\,g \right)$ of the Laplace–Beltrami operator can be considered as functionals on the space of all Riemannian metrics $g$ on a fixed surface $M$. In recent papers several explicit examples of extremal metrics were provided. These metrics are induced by minimal immersions of surfaces in ${{\mathbb{S}}^{3}}$ or ${{\mathbb{S}}^{4}}$. In this paper a family of extremal metrics induced by minimal immersions in ${{\mathbb{S}}^{5}}$ is investigated.
Let $X$ be a connected Riemannian manifold such that the resolvent of the free Laplacian ${{(\Delta -z)}^{-1}},\,z\,\in \,\mathbb{C}\backslash {{\mathbb{R}}^{+}}$, has a meromorphic continuation through ${{\mathbb{R}}^{+}}$. The poles of this continuation are called resonances. When $X$ has some symmetries, we construct complex-valued potentials, $V$, such that the resolvent of $\Delta \,+\,V$, which has also a meromorphic continuation, has the same resonances with multiplicities as the free Laplacian.
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.
The eta invariant of the Dirac operator over a non-compact cofinite quotient of PSL(2,ℝ) is defined through a regularized trace following Melrose. It reduces to the standard definition in terms of eigenvalues in the case of a totally non-trivial spin structure. When the S1-fibers are rescaled, the metric becomes of non-exact fibered-cusp type near the ends. We completely describe the continuous spectrum of the Dirac operator with respect to the rescaled metric and its dependence on the spin structure, and show that the adiabatic limit of the eta invariant is essentially the volume of the base hyperbolic Riemann surface with cusps, extending some of the results of Seade and Steer.
Let $M$ be a closed Riemannian manifold. We consider the inner radius of a nodal domain for a large eigenvalue $\text{ }\!\!\lambda\!\!\text{ }.$ We give upper and lower bounds on the inner radius of the type
$C/{{\lambda }^{\alpha }}{{(\log \lambda )}^{\beta }}.$ Our proof is based on a local behavior of eigenfunctions discovered by Donnelly and Fefferman and a Poincaré type inequality proved by Maz’ya. Sharp lower bounds are known only in dimension two. We give an account of this case too.
The behavior of the dynamical zeta function
${{Z}_{D}}(s)$
related to several strictly convex disjoint obstacles is similar to that of the inverse
$Q(s)\,=\,\frac{1}{\zeta (s)}$
of the Riemann zeta function $\zeta \left( s \right)$. Let $\prod \left( s \right)$ be the series obtained from
${{Z}_{D}}(s)$
summing only over primitive periodic rays. In this paper we examine the analytic singularities of
${{Z}_{D}}(s)$
and $\prod \left( s \right)$ close to the line
$\Re s={{s}_{2}},$ where
${{s}_{2}}$
is the abscissa of absolute convergence of the series obtained by the second iterations of the primitive periodic rays. We show that at least one of the functions
${{Z}_{D}}(s),$$\prod \left( s \right)$ has a singularity at
$s\,=\,{{s}_{2}}$.
We study the geometry of the set of closed extensions of index 0 of an elliptic differential cone operator and its model operator in connection with the spectra of the extensions, and we give a necessary and sufficient condition for the existence of rays of minimal growth for such operators.
A sharp upper bound on the first ${{S}^{1}}$ invariant eigenvalue of the Laplacian for ${{S}^{1}}$ invariant metrics on ${{S}^{2}}$ is used to find obstructions to the existence of ${{S}^{1}}$ equivariant isometric embeddings of such metrics in (${{\mathbb{R}}^{3}}$, can). As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in (${{\mathbb{R}}^{3}}$, can). This leads to generalizations of some classical results in the theory of surfaces.
The first eigenvalue of the Laplacian on a surface can be viewed as a functional on the space of Riemannian metrics of a given area. Critical points of this functional are called extremal metrics. The only known extremal metrics are a round sphere, a standard projective plane, a Clifford torus and an equilateral torus. We construct an extremal metric on a Klein bottle. It is a metric of revolution, admitting a minimal isometric embedding into a sphere ${{\mathbb{S}}^{4}}$ by the first eigenfunctions. Also, this Klein bottle is a bipolar surface for Lawson's ${{\tau }_{3,1}}$-torus. We conjecture that an extremal metric for the first eigenvalue on a Klein bottle is unique, and hence it provides a sharp upper bound for ${{\lambda }_{1}}$ on a Klein bottle of a given area. We present numerical evidence and prove the first results towards this conjecture.