We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We revisit processes generated by iterated random functions driven by a stationary and ergodic sequence. Such a process is called strongly stable if a random initialization exists for which the process is stationary and ergodic, and for any other initialization the difference of the two processes converges to zero almost surely. Under some mild conditions on the corresponding recursive map, without any condition on the driving sequence we show the strong stability of iterations. Several applications are surveyed such as generalized autoregression and queuing. Furthermore, new results are deduced for Langevin-type iterations with dependent noise and for multitype branching processes.
We define the co-spectral radius of inclusions ${\mathcal S}\leq {\mathcal R}$ of discrete, probability- measure-preserving equivalence relations as the sampling exponent of a generating random walk on the ambient relation. The co-spectral radius is analogous to the spectral radius for random walks on $G/H$ for inclusion $H\leq G$ of groups. For the proof, we develop a more general version of the 2–3 method we used in another work on the growth of unimodular random rooted trees. We use this method to show that the walk growth exists for an arbitrary unimodular random rooted graph of bounded degree. We also investigate how the co-spectral radius behaves for hyperfinite relations, and discuss new critical exponents for percolation that can be defined using the co-spectral radius.
In this paper we extend results on reconstruction of probabilistic supports of independent and identically distributed random variables to supports of dependent stationary ${\mathbb R}^d$-valued random variables. All supports are assumed to be compact of positive reach in Euclidean space. Our main results involve the study of the convergence in the Hausdorff sense of a cloud of stationary dependent random vectors to their common support. A novel topological reconstruction result is stated, and a number of illustrative examples are presented. The example of the Möbius Markov chain on the circle is treated at the end with simulations.
We show that for arrival processes, the ‘harmonic new better than used in expectation’ (HNBUE) (or ‘harmonic new worse than used in expectation’, HNWUE) property is a sufficient condition for inequalities between the time and customer averages of the system if the state of the system between arrival epochs is stochastically decreasing and convex and the lack of anticipation assumption is satisfied. HNB(W)UE is a wider class than NB(W)UE, being the largest of all available classes of distributions with positive (negative) aging properties. Thus, this result represents an important step beyond existing result on inequalities between time and customer averages, which states that for arrival processes, the NB(W)UE property is a sufficient condition for inequalities.
The switch process alternates independently between 1 and $-1$, with the first switch to 1 occurring at the origin. The expected value function of this process is defined uniquely by the distribution of switching times. The relation between the two is implicitly described through the Laplace transform, which is difficult to use for determining if a given function is the expected value function of some switch process. We derive an explicit relation under the assumption of monotonicity of the expected value function. It is shown that geometric divisible switching time distributions correspond to a non-negative decreasing expected value function. Moreover, an explicit relation between the expected value of a switch process and the autocovariance function of the switch process stationary counterpart is obtained, leading to a new interpretation of the classical Pólya criterion for positive-definiteness.
In this paper, several linear two-dimensional consecutive k-type systems are studied, which include the linear connected-(k, r)-out-of-$(m,n)\colon\! F$ system and the linear l-connected-(k, r)-out-of-$(m,n)\colon\! F$ system without/with overlapping. Reliabilities of these systems are studied via the finite Markov chain imbedding approach (FMCIA) in a novel way. Some numerical examples are provided to illustrate the theoretical results established here and also to demonstrate the efficiency of the developed method. Finally, some possible applications and generalizations of the developed results are pointed out.
Pseudo cross-variograms appear naturally in the context of multivariate Brown–Resnick processes, and are a useful tool for analysis and prediction of multivariate random fields. We give a necessary and sufficient criterion for a matrix-valued function to be a pseudo cross-variogram, and further provide a Schoenberg-type result connecting pseudo cross-variograms and multivariate correlation functions. By means of these characterizations, we provide extensions of the popular univariate space–time covariance model of Gneiting to the multivariate case.
We give an example of an FIID vertex-labeling of ${\mathbb T}_3$ whose marginals are uniform on $[0,1]$, and if we delete the edges between those vertices whose labels are different, then some of the remaining clusters are infinite. We also show that no such process can be finitary.
Let X be a continuous-time strongly mixing or weakly dependent process and let T be a renewal process independent of X. We show general conditions under which the sampled process
$(X_{T_i},T_i-T_{i-1})^{\top}$
is strongly mixing or weakly dependent. Moreover, we explicitly compute the strong mixing or weak dependence coefficients of the renewal sampled process and show that exponential or power decay of the coefficients of X is preserved (at least asymptotically). Our results imply that essentially all central limit theorems available in the literature for strongly mixing or weakly dependent processes can be applied when renewal sampled observations of the process X are at our disposal.
Let
$q\ge2$
be an integer,
$\{X_n\}_{n\geq 1}$
a stochastic process with state space
$\{0,\ldots,q-1\}$
, and F the cumulative distribution function (CDF) of
$\sum_{n=1}^\infty X_n q^{-n}$
. We show that stationarity of
$\{X_n\}_{n\geq 1}$
is equivalent to a functional equation obeyed by F, and use this to characterize the characteristic function of X and the structure of F in terms of its Lebesgue decomposition. More precisely, while the absolutely continuous component of F can only be the uniform distribution on the unit interval, its discrete component can only be a countable convex combination of certain explicitly computable CDFs for probability distributions with finite support. We also show that
$\mathrm{d} F$
is a Rajchman measure if and only if F is the uniform CDF on [0, 1].
For a one-locus haploid infinite population with discrete generations, the celebrated model of Kingman describes the evolution of fitness distributions under the competition of selection and mutation, with a constant mutation probability. This paper generalises Kingman’s model by using independent and identically distributed random mutation probabilities, to reflect the influence of a random environment. The weak convergence of fitness distributions to the globally stable equilibrium is proved. Condensation occurs when almost surely a positive proportion of the population travels to and condenses at the largest fitness value. Condensation may occur when selection is favoured over mutation. A criterion for the occurrence of condensation is given.
We consider two classes of irreducible Markovian arrival processes specified by the matrices C and D: the Markov-modulated Poisson process (MMPP) and the Markov-switched Poisson process (MSPP). The former exhibits a diagonal matrix D while the latter exhibits a diagonal matrix C. For these two classes we consider the following four statements: (I) the counting process is overdispersed; (II) the hazard rate of the event-stationary interarrival time is nonincreasing; (III) the squared coefficient of variation of the event-stationary process is greater than or equal to one; (IV) there is a stochastic order showing that the time-stationary interarrival time dominates the event-stationary interarrival time. For general MSPPs and order two MMPPs, we show that (I)–(IV) hold. Then for general MMPPs, it is easy to establish (I), while (II) is shown to be false by a counter-example. For general simple point processes, (III) follows from (IV). For MMPPs, we conjecture that (IV) and thus (III) hold. We also carry out some numerical experiments that fail to disprove this conjecture. Importantly, modelling folklore has often treated MMPPs as “bursty”, and implicitly assumed that (III) holds. However, to the best of our knowledge, proving this is still an open problem.
We study an open discrete-time queueing network. We assume data is generated at nodes of the network as a discrete-time Bernoulli process. All nodes in the network maintain a queue and relay data, which is to be finally collected by a designated sink. We prove that the resulting multidimensional Markov chain representing the queue size of nodes has two behavior regimes depending on the value of the rate of data generation. In particular, we show that there is a nontrivial critical value of the data rate below which the chain is ergodic and converges to a stationary distribution and above which it is non-ergodic, i.e., the queues at the nodes grow in an unbounded manner. We show that the rate of convergence to stationarity is geometric in the subcritical regime.
For a non-negative separable random field Z(t),
$t\in \mathbb{R}^d$
, satisfying some mild assumptions, we show that
$ H_Z^\delta =\lim_{{T} \to \infty} ({1}/{T^d}) \mathbb{E}\{{\sup_{ t\in [0,T]^d \cap \delta \mathbb{Z}^d } Z(t) }\} <\infty$
for
$\delta \ge 0$
, where
$0 \mathbb{Z}^d\,:\!=\,\mathbb{R}^d$
, and prove that
$H_Z^0$
can be approximated by
$H_Z^\delta$
if
$\delta$
tends to 0. These results extend the classical findings for Pickands constants
$H_{Z}^\delta$
, defined for
$Z(t)= \exp( \sqrt{ 2} B_\alpha (t)- \lvert {t} \rvert^{2\alpha })$
,
$t\in \mathbb{R}$
, with
$B_\alpha$
a standard fractional Brownian motion with Hurst parameter
$\alpha \in (0,1]$
. The continuity of
$H_{Z}^\delta$
at
$\delta=0$
is additionally shown for two particular extensions of Pickands constants.
We introduce a definition of long range dependence of random processes and fields on an (unbounded) index space
$T\subseteq \mathbb{R}^d$
in terms of integrability of the covariance of indicators that a random function exceeds any given level. This definition is specifically designed to cover the case of random functions with infinite variance. We show the value of this new definition and its connection to limit theorems via some examples including subordinated Gaussian as well as random volatility fields and time series.
For random piecewise linear systems T of the interval that are expanding on average we construct explicitly the density functions of absolutely continuous T-invariant measures. If the random system uses only expanding maps our procedure produces all invariant densities of the system. Examples include random tent maps, random W-shaped maps, random
$\beta $
-transformations and random Lüroth maps with a hole.
We consider the problem of numerical integration when the sampling nodes form a stationary point process on the real line. In previous papers it was argued that a naïve Riemann sum approach can cause a severe variance inflation when the sampling points are not equidistant. We show that this inflation can be avoided using a higher-order Newton–Cotes quadrature rule which exploits smoothness properties of the integrand. Under mild assumptions, the resulting estimator is unbiased and its variance asymptotically obeys a power law as a function of the mean point distance. If the Newton–Cotes rule is of sufficiently high order, the exponent of this law turns out to only depend on the point process through its mean point distance. We illustrate our findings with the stereological estimation of the volume of a compact object, suggesting alternatives to the well-established Cavalieri estimator.
Consider an ergodic Markov chain on a countable state space for which the return times have exponential tails. We show that the stationary version of any such chain is a finitary factor of an independent and identically distributed (i.i.d.) process. A key step is to show that any stationary renewal process whose jump distribution has exponential tails and is not supported on a proper subgroup of
${\mathbb {Z}}$
is a finitary factor of an i.i.d. process.
This article investigates the long-time behavior of conservative affine processes on the cone of symmetric positive semidefinite
$d\times d$
matrices. In particular, for conservative and subcritical affine processes we show that a finite
$\log$
-moment of the state-independent jump measure is sufficient for the existence of a unique limit distribution. Moreover, we study the convergence rate of the underlying transition kernel to the limit distribution: first, in a specific metric induced by the Laplace transform, and second, in the Wasserstein distance under a first moment assumption imposed on the state-independent jump measure and an additional condition on the diffusion parameter.
The limit behavior of partial sums for short range dependent stationary sequences (with summable autocovariances) and for long range dependent sequences (with autocovariances summing up to infinity) differs in various aspects. We prove central limit theorems for partial sums of subordinated linear processes of arbitrary power rank which are at the border of short and long range dependence.